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Abstract- The recent escalation in fuel costs has
resulted in a host of optimization problems which were
non-existent when fuel was relatively inexpensive.
Coupled with the increased costs have been more
difficult operational constraints imposed by fuel
vendors. These problems are particularly acute in
natural gas fired units which cannot rely on reserve
storage of fuel to meet demand. This research
addresses the problem of optimal system operation
subject to more contemporary operating constraints.
The solution algorithm is based on a new optimization
algorithm termed "practi cal optimization".

1.0 INTRODUCTION

The subject of this paper is a new optimization
algorithm for power system related problems. In this
paper, the algorithm is applied to solve the problem
of operating a power system at mini-mum cost, while
satisfying operational constraints resulting from
contractual limitations on the fuel supply to the
generation units. This research is motivated due to
the actual operational problems of a large
Southwestern Utility which is heavily dependent on
fossil generation units. The algorithm is adaptive in
the sense that it will execute faster and faster as
more information describing the feasibility space
[13-15] of the optimal solution becomes available. It
is also adaptive in the sense that it can respond
quickly to changes in system operating constraints or
objective functions.

Conventional approaches to optimizing power
system performance are traditionally separated into
two sub-problems. Often, there is the planning
problem, usually addressed by a unit commitment
algorithm [1-3]. There is also the real timne dispatch
problem which has a well known solution (economic
dispatch) [4-6]. Unfortunately, fuel related
constraints vary with both time and system demand.
Some research has been done on this problem [7]..
Typically, there is a certai n amount of fuel which
flows into a fuel distribution network, in a specified
time period. Multiple units share a single source of
fuel. It is the utility's responsibility to assure
that the contractual limitations, regarding the flow
of fuel into the distribution network, are satisfied.
It is also desirable to operate the system at minimum
cost.
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For the utility of interest in this paper,
natural gas is the major source of fossil fuel.
Natural gas contracts limit the amount of fuel
available to units within a single plant or wiithin
multiple plants. Additionally,, it is desirable to
take advantage of inexpensive fuel that becomes
available, on short notice, on the open market. To
provide this flexibility, it is necessary to develop
an optimization algorithm which is easily adapted to
changing operating conditions and objective functions.

Conventional unit commitment (UC) algorithms are
not suitable candidates- for modification or expansion
to solve fuel related constraints because: 1) UC
requires a predicted load demand which is inherently
inaccurate. If the actual load is not as predicted,
the usefulness of UC is questionable and may cause a
violation of a contractual fuel constraint. 2)
Typically, UC algorithms do not execute fast enough
for real time applications. Therefore, they cannot
respond to sudden fuel pressure drops (caused by
curtailments from the supplier) or the sudden
availability of inexpensive fuel from the spot market.

The optimization algorithm of this paper is
termed "practical optimization." It was developed,
specifically, to address the problem of optimizing
system performance subject to fuel related
constraints. Other applications are likely. This
method is an unconventional approach to optimization.
Additionally, it is well suited to take advantage of
feedback information regarding the flow of fuel into
the units which is available. Plant computers provide
a real time indication of the flow of fuel (gas and/or
oil) into generation units. This information is
useful for determining how the system is operating
with respect to fuel constraints. This feedback
information provides necessary information to update
fuel constraints if fuel burn rates are outside
desirable limits.

The principle behind practical optimization is as
follows. First, any fuel related constraints are
represented as linear inequality constraints on the
control vector as described in Appendix A.
Conventional economic dispatch is utilized to
determine an optimal operating point, xd, in real
time, where xd is a vector of MW outputs for each of
the generation units. If all fuel related inequality
constraints are satisfied (in addition to conventional
constraints), the resultant optimal operating point,
xd, is the true optimum. If there is a violation of
one or more of the fuel constraints, it is necessary
to transform the associated infeasible optimal
operating point to feasibility, in real time, in an
optimal sense. To accomplish this task, the method of
practical optimization is applied.

Some assumptions are presented.

Assumption 1 - It is noted that many cost minimization
problems for power systems have objective functions
which are relatively flat and continuous [8].
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Therefore, many different operating points in the
vicinity of the true optimal solution will result in
"approximately" the same objective function cost as
long as the euclidean distance between any point and
the true optimum is sufficiently small.

Assumption 2 - To make the sol ution to the fuel
constrained optimization problem (FCOP) viable, any
proposed algorithm should operate with minimal impact
on existing power system control center software, yet
operate in real time.

Assumpti.on 3 - Any proposed algorithm must be simple
to use. It must be available to system operational
personnel to aid in decision making. For example, the
question of buying or selling power will affect the
ability of the system to meet fuel related
constraints. Decisions must be made on short notice.

With the above assumptions in mind, some
theoretical observations are appropriate. First, it
is noted that conventional power system rel ated
constraints form a convex polyhedron [9) in
n-dimensional (R n) control space for the control
vector x (MW outputs for n - units). This polyhedron
set is labelled K*. The fuel related constraints,
represented as* linear inequalities, form a convex
subset, K (KS;K ). Hence, the optimum determined by
economic dispatch, xd, will also be such that xde K*.
However, it is not always true that xd e K. When
xd,eK, it is necessary to find the practical optimum,
xP. The practical optimum., xP, is defined as the
operating point on the surface of K such that the
euclidean distance to the infeasible optimal point xd
is minimum. With the above assumptions in mind, it is
further assumed that:

Assumption 4 - The objective function cost at the
practical optimum is sufficiently close to the
objective function cost at the true optimum.

Note that the practical optimal solution will always
be feasible, which is a useful result in itself. Some
algorithms, such as Newton-Raphson, cannot guarantee
feasibility.

2.0 METHOD

Given the above assumptions and descriptions-, the
remaining problem is determination of the practical
optimum. It is not a trivial matter to determine the
point on an n-dimensional convex hull closest to an
exterior point. Additionally, it is desirable to
accomplish this task in real time. This problem is a
cousin to the linear progranmning problem, however, it
is a distant cousin. (The objective function., to
minimize the distance between two points., is not a
linear relationship.)

Determination of the practical optimum is reduced
to two steps: 1) determining the hyperplane [9] which
defines the facet (face) closest to the infeasible
point xd, and 2) finding a point on the facet. This
problem is still not trivial (see Appendix C). A new
algorithm., the ellipsoid algorithm 110-12), provides a
solution to this problem. However., several
modifications to a basic ellipsoid algorithm (as
described in [10-12] and Appendix B) are necessary to
achieve fast execution and numerical stability.
Basically, the ellipsoid algorithm determines a
feasible solution to the system of inequalities,

where A is a m x n matrix of constraints, x is the
control vector and b is a known constant vector
(subject to revision). The algorithm determines a,
feasible solution by determining (iterati vely))
shrinking ellipsoids within which a solution is
contained. For practical optimization, the matrix A
is used to represent both fuel related and
conventional constraints. Once the hyperplane closest
to the infeasible solution xd, Hd, is determined, the
matrix A is augmented with a hyperplane, Ha
(constraint), parallel to Hd and "inside" the set K.

The idea is to force the ellipsoid algorithm to find a
solution an epsilon distance from the facet associated
with Hd. This goal is accomplished by choosing nI ba
- bdil sufficiently small where ba and bd indicate the
constants associated with hyperplanes Ha and Hd,
respectively.

The reader will note that the procedure described
above results in determination of a general point
essentially on the surface of the facet closest to the
infeasible operating point. This does not (in
general) result in the closest point (practical
optimum). To minimize this error, the original
infeasible vector, xd., is further constrained such
that each of its elements may not change by more than
a certain percentage. The effect of this is to
further limit the feasible solution space, forcing the
resulting feasible solution to be sufficiently close
to the practical optimum.

3.0 EXAMPLE

For the problem of fuel constrained power system
operation, particular care is given to the
presentation of an example. Of particular concern is
the fact that since this problem has not been solved
before, it is difficult to compare the results of this
paper to something else. This is particularly true
since the method of practical optimization does not
result in an exact optimal solution. To have some
means of comparison, the method of practical
optimization is compared to two different methods.
All methods are applied to an actual power system of
14 units. All cost functions, etc. result from
actual system data. First., a conventional constrained
economic dispatch (CED) is applied. This algorithm
addresses the conventional operational limits on the
units. Secondly, the cost of operating the system,
including fuel related constraints, Cf. is calculated
by applying the method of practical optimization (PO).
It is apparent that Cf 2 Cc will always result due to
the additional fuel constraints., where Cc is the
operational cost associated with constrained economic
dispatch. Additionally, for a given system demand., it
is desirable to determine the practical optimum, xP,

such that 9ICf - CCil is as small as possible. If this
difference is sufficiently small, the usefulness of
the method is verified. Thirdly, once the practical
optimum is determined, the cost functions for the
generation units are linearized about this operating
point. A linear programning algorithm (LP) is applied
to determine the minimum. The idea is try to find any

(potential) improvements in system cost, as compared
to PO. For a system of 14 units (actual system), the
three algorithms above are applied. The fuel related
constraints have been translated into inequality
constraints as described in Appendix A.

(1)Ax < b
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In the sample problem., for this paper, the
results of a conventional economic dispatch are
calculated for 24 different system demand levels. For
each CED solution, the results are tested to see if
fuel related constraints are violated. If no
violations occur, the CED solution is considered the
optimal solution. However, for the actual system
data-, daily system demand, and actual fuel constraints
analyzed, 10 times out of 24, a violation of at least
1 fuel constraint occurred. Hence, for these 10
cases, CED resulted in an infeasible solution.

As a typical example of a case of an infeasible
CED solution, the case of a system demand of 4352 MW
is considered. In total, there are 5 sets of fuel
constraints considered. For this example, the only
constraint of importance, is the constraint which was
violated. This constraint requires that,

5
417 < E SAB(i) < 1672 (MW).

i=l

(note: unit names indicate elements of the x vector)

The PO algorithm transforms the infeasible CEO
solution to a feasible practical optimum as shown in
Table 1. For comparison, a Linear Programning (LP)
solution, with linearized cost function., is applied to
see if further improvements to the practical optimum
are possible. (Note: The columns labelled U-BND and
L-BND, in Table 1, represent the MW operational limits
of the units.

The following are important: 1) The increase in
cost of satisfying the fuel constraints with PO, as
opposed to ignoring them as in CED, is minimal, 2) an
LP algorithm is not capable of determining a less
costly system operating point and, 3) the PO algorithm
executes quickly (in real time). Also, the cost
functions for the units utilized in this example are
actual costs. Unfortunately, for confidentiality.,
these functions have not been included. However,
interpretation of the results of practical
optimization does not require an explicit descriptions
of these cost functions., since they are the same cost
functions utilized in conventional economic dispatch.

OPTIMIZATION :

L-BND

SAB1
NEL3
SAB4
SAB5
SAB3
NEL6
WJG 5
WIG 4
WIG 2
LEW1
SAB2
WJG 3
NEL4
LEW12

: 100
: 70
: 312
: 106
: 200
: 247
: 252
: 250
: 93
: 92
: 100
: 244
: 340
: 92

CED

For an actual application of the method of this
paper, the PO algorithm would be included in the power
system control software. Additional logic to test for
violations of fuel related constraints would also be
included. The CED would first attempt to determine a
feasible optimal solution. If it fails, the PO
algorithm transforms the infeasible solution to the
practical optimum, in real time. This approach
requires minimal modifications to conventional
approaches, yet allows for the flexibility to address
a wide variety of operational constraints.

4.0 DISCUSSION

The versatility of the method of practical
optimization results primarily from the fact that the
method does not specifically address the objective
function. The nature of power systems dictate that
objective functions are usually "flat" which makes the
method of practical optimization a powerful tool for
these types of problems. In the limit, as the
constraints become severely limiting, the practical
optimum will equal the true optimum. Hence, if it
could be determined., there exists an exact solution to
the FCOP. It is unlikely that the exact solution
algorithm to the FCOP would execute in real time or be
adaptable to changing objectives or constraints.
Hence, the real errors, resulting from changing from
the planning mode to the operational mode, would
likely exceed the errors associated with practical
optimization. Further, practical optimization is
significantly more convenient.

Since the PO algorithm need only execute if the
results of CED result in a fuel constraint violation,
the effects of PO on existing system software are
minimized. The present PO algorithm requires about 1
sec of CPU (typically) on an IBM 3083. The code has
not been optimized. Hence, for casual or infrequent
application of this algorithm (for instance, to solve
problems which are insoluble by other means) impact on
exis,ting system software CPU requirements is
negligible.

PO LP

U-BND

< 230
< 70
< 512
< 475
< 317.7
< 540
< 436.5
< 250
1< 93
< 260
< 206. 3
< 296.4
< 425.6
< 239.6

212.3
80.13
496.2
443.9
345.9
537.3
495.9
282.8
94.02
227.3
168.9
3.32
428.2
209.4

191.1
72.12
446.6
399.5
311.3
540
545.5
254.5
93
245
185.8
365.2
471
230.4

z

230
160
512
475
438
540
550
500
206
260
230
500
500
260

******* ***

TOTAL COST: 1.824E5 1.829E5 1. 83E5

TABLE 1
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5.0 CONCLUSIONS

The PO algorithm is extremely effective at
minimizing system operating costs subject to fuel
related constraints. Also, it is extremely adaptable
because of its fast convergence and ability to address
a wide variety of objective functions. Applications,
other than fuel constraints, such as security
constraints and hydro generation constraints, are
likely.

Since feedback concerning the fuel supplies is
available., the approach is self-correcting, with time.
Further, PO satisfies the requirements presented in
the form of assumptions in the beginning of the paper.
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A group of units sharing the same supply of fuel
sources is denoted by, Gi., where i usually indicates
plant i. c I is the fraction of generating capacity
of unit j as measured with respect to the total
capacity of group Gi. Nij is the average efficiency
of unit j in Gi. Normal Y the contractual
limitations dictate minimum ana nimum flow rates of
fuel (BTU's/Hr) as well as integral constraints on
fuel.

Software must allow for the following
calculations. First, it must determine the maximum
and minimum allowable flow of fuel into Gi. This is
measured in BTU's/Hr. This problem is not of great
difficulty. Then., the software must convert these
numbers to the upper and lower operational limits (MW)
for each unit in GI. This is accomplished by
application of the fol lowing formula:

max (min) Pij = ciiNii x max (min) Fi

where Fi is the sum of available fuels for Gi and Pij
is the MW output for unit j in Gi.

The formula above is used to obtain the values of
the bk constants described in Inequality 1. When all
the Gi's for a particular plant are composed of the
exact same set of units., the calculation above is
straight forward. Some additional manipulations are
necessary when the above condition is not satisfied.

APPENDIX B

The Ellipsoid Algorithm is described in [10-12].
The input to the algorithm is a set of inequalities,
Ax < b, of size L (see [10]) . The output of the
algorithm is an n-vector, x, that satisfies Ax < b, if
a solution exists. The following steps describe the
algorithm :

1. Set j=O: to 0: B = n222LI where I is the
identity matrix.

2. j counts the number of iterations. If t
satisfies Ax < b, then return tj. If
j=16n(n+1)L., then no solution exists.
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3. (Iteration) Choose any innequality in Ax < b
that is violated by tj (denote the corresponding
row of A as aT):

Set:

satisfy the strict inequality dv < da
Hence, xf is some point on a face of K
closest to the infeasible point xd.

i, i.
which i s

To determine a point., xP, on the face of K such
that (3) is satisfied., the concept of a direction
cosine is defined as:

Ba
tj+l = Itj -

+ aBa0 qlT q2

((q T ql)(q2T q2))°*5
(4)

2 (B.a)(Bja)T(B y aTBJ
a

for two vectors ql, q2 £ Rn. The face of K, Fi.,
closest to an infeasible optimum xd is found by
defining ql = xd and

j = j+1

At any point in the algorithm the ellipsoid is
described by

x: (x_t.)T B. 1 (x-tj) < 1

A proof of these assertions is found in [11].

The basic. algorithm as described above is
significantly improved if practical arguments are
utilized to limit the siie of the initial ellipsoid.
This feature was implemented in the algorithm of this
paper. The general.approach is described in [12]. In
this paper., the choice of the initial t, t0, is the
infeasible xd. The limitations on the changes in the
elements of xd,. to determine the practical optimum,
are represented by the matrix A.

Procedures for insuring numerical stability are
described in [12].

q2 = qi : qj = ai (5)

where a1 = the ith row of the matrix A of (1). If
redundant constraints exist, only those ai., bi which
are violated by xd are considered for q2. The qi are
the normal vectors to a facet (hyperplane) defining K.

Since K is convex,

max cos u12
q2

(6)

determines the normal vector .to the face of K, Fp,
which is closest to th,e point xd. The prac ti c al
optimum results from determining any point on Fp by
limiting the feasible search space such that the

elements of the original infeasible vector are not
changed by a specified percentage.

The practical optimum, xP., is found by augmenting
the set of inequalities defined by Ax < b with one
more row, equal to the row of A defining the normal to
F The equation apx < bp defines the hyperplane of
tne closest face. The augmented constraint is defined
as

APPENDIX C

This Appendix briefly describes the practical
optimization algorithm. The practical optimum is the
operating point, xP,,defihed as a. point such that the
Euclidean distance lixP - xdil is minimum and xP £ K,
when xd is infeasible.

The inequality

Ak x < bk

describes the set Kk where the superscript k indicates
that, the set Kk is subject to change. The faces, Fi,
of this set are defined by the intersection of a

linear half space, L, and the set Kk

Fi = Kkn Li . (2)

The particular., Li's are determined from the rows of
A. If the dimension of Fi C Rn-., the face is termed
a facet. A zero dimensional Fi is a vertex.

For, practical problems it is sufficient to
determine xP as a point on the face, Fi., such that the
distances

{dv = iixf - xdii : xfEFiCK. xdE K* }

a x < b'm+1

where b' is chosen such that.,

xPe K: A'x < be, (apx < b'm+inK) C K . (7)

Practically., it is not difficult to choose an

appropriate b'm+1. If Ilb'm+l - b is chosen
sufficiently small, xP, the practicay optimum is

specified. (Assuming the solution space has been

sufficiently constrained.)
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(3)

fda = Itxf - x6ll : x cFj 9K, jf i , xA K* }

(3)

i= n2
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