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Fig. 9. Harmonic content of the output current as a function of Q,. 

values given here are in very good agreement with those given in 
141. 

V. CONCLUSIONS 

A new method for the analysis and design of the class E tuned 
power amplifier taking into account the Q, factor has been 
described and implemented for the special case of the series-tuned, 
shunt-capacitance load-network configuration. 

Load-network design element values were obtained as a func- 
tion of Q, for optimum amplifier performance. These values 
were used to plot curves for the device stress, the power output, 
and the power output capability as functions of Q,. These curves 
were compared with the corresponding curves obtained using 
element values given by Sokal[3] and Raab [2]. Curves were also 
plotted which show the influence of the shunting capacitance and 
the detuning portion of L, on the design requirements for 
various values of Q,. Finally, the harmonic content of the output 
current was obtained and plotted as a function of Q,. 

The method presented here can be used for the analysis and 
design of other class E amplifier configurations [6], or with more 
complicated circuits in practical designs. Such an analysis might 
prove ‘very useful because it ensures optimum amplifier perfor- 
mance for all values of Q,, it provides the designer with quanti- 
tative criteria for the usual tradeoffs concerning Q,,, and it makes 
the amplifier performance more predictable and the design more 
reliable. 

The design and performance values obtained in this paper have 
been tested using computer simulation [8] as well as laboratory 
experiments. The experimental results agree very closely, espe- 
cially when the circuit conditions were made to approximate 
closely the assumptions made. 
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The Stochastic Process of Transitions between Limit 
Cycles for a Special Class of Self-Oscillators under 

Random Perturbations 

Y. A. SAET AND G. L. VIVIANI, MEMBER, IEEE 

Abstract -A plenary investigation of the stochastic transitions between 
neighborhoods of limit cycles in a randomly perturbed special class of 
oscillatory circuits is presented. The very possibility of the realization of 
self-oscillators with a given set of several limit cycleswas established in the 
recent works of the authors. On this ground, a simple analysis of the 
associated diffusion process and its properties are given. 

I. INTRODUCTION 

Interest in the behavior of dynamical systems with multiple 
steady states and under random perturbation appeared in the 
early 1930’s [l]. Stochastic processes of the diffusion type 
originating in this way have been receiving increasingly broad 
interpretations (see [2], [3] and references therein), while particu- 
lar attention to systems with several limit cycles in applied 
physics, electronics, and chemical kinetics is focused in [l], [4]-[6], 
and [15]. 

Most investigations in the field are based on purely theoretical 
considerations or hypothetical models with no requisite control 
over the dynamical processes in the concrete physical object. In 
analytical studies, as a rule, serious difficulties arise when at- 
tempting to solve the associated Fokker-Planck equations, even 
approximately. Therefore, any concrete example with an ex- 
plicitly solvable Fokker-Planck equation is of significant value. 
A paradigm of certain changes in commonly known oscillatory 
dynamical systems, providing a basis for complete stochastic 
analysis, can be found in the works of Caughey [7], [8]. The 
“distorted” system, besides being interesting on its own, pre- 
serves the qualitative phase-space portrait of the original one and 
therefore they both behave similarly under random perturbation. 

Thus, we work with a dynamical system which does not need 
any use of “small perturbation” theories. Our oscillator is strongly 
nonlinear (not quasi-linear), and its limit cycles are determined 
exactly, not through approximations. Moreover, the solution to 
the Fokker-Planck equation is also exact and is not, in any 
direct way, related to the asymptotic theory of small random 
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perturbations in quasi-linear stochastic “systems with averaging” 
[16]. Nevertheless, in our analysis, we make use of the asymptotic 
estimates of the exact solution. to the Fokker-Planck equation 
with respect to a parameter which ordinarily appears in problems 
for elliptic equations with singular perturbation (see, e.g., [17]). 

Although, as mentioned above, the discussions regarding the 
character of the described diffusion processes began over 50 
years ago [l], this work represents their first explicit experimental 
observation. 

II. DETERMINISTIC SYSTEM WITH MULTIPLE CYCLES 

In a framework of quasi-linear theory, the simplest way of 
arriving at a system with several limit cycles would be a Lienard 
equation: 

d2x dx 
-+pw(x)dl+x=o. 
dt* (1) 

The most natural generalization of the Van der Pol equation 
occurs for W(x) in (l), such that (see [9], [lo], [14]) 

However, contrary to the Van der Pol equation when N = 1, such 
a choice of W(x) does not guarantee the appearance of N limit 
cycles; ‘nor does it provide for an easily solvable Fokker-Planck 
equation. In a very recent work [9], for example, both problems 
are alleviated by preliminary approximate asymptotic assump- 
tions and informal heuristic reasoning. It is stated there that for 
N = 3, “once the amplitudes of the stable cycles are fixed, they 
uniquely determine the amplitude of the unstable cycle.. .” 
Obviously, in general, this statement is incorrect [lo]. We will use 
a slightly different model: 

fi(2Z-a:) 4+x=0 1 k=l 
(2) 

where 
1 

2=+*+x2), pFL> 0. 

The system in (2) has N limit cycles corresponding to periodical 
solutions xk = uk sin t. If a, > u2 > . . . > uN > 0, then all limit 
cycles with odd number k are orbitally asymptotically stable, and 
those for even k are unstable. As for the equilibrium x = 0, it is 
unstable for odd N and asymptotically stable for even N. Thus, 
we arrive at a situation as described in [16, ch. 7, sec. 11. 
Considering the oscillator with one degree of freedom, the authors 
[16] single out conditions for the existence of more than one limit 
cycle in terms of Van der Pol variables. An essential condition 
for their approach is the presence of the small parameter at the 
nonlinear terms in the equation of the oscillator. We emphasize 
that the parameter ~1 in (2) may assume arbitrary values, unlike 
the assumptions of [16]; i.e., the periodical solutions of oscillator 
(2) are totally independent of the value of parameter II. Because of 
this circumstance, the Lyapunov exponents of periodical solu- 
tions to (2), being proportional to p, can assume arbitrarily large 
values. This possibility does not exist in quasi-linear systems 
(these systems can have only “small” Lyapunov exponents) 
studied in [16]-[18]. 

III. A STOCHASTICALLYDFUVEN OSCILLATOR 

When oscillator (2) is driven with white noise, 

g+p 
[ 

kfil(2z-u:) ;+x=(2fJ)‘/‘C(t). 1 

where (I = constant > 0 and t(t) is a “white noise” with 

The stationary probability density p(x, dx/dt) satisfies the fol- 
lowing Kolmogorov-Fokker-Planck equation: 

o=-.,g+; 
1 2 i[ 

px,k~l(2h-u:)+x, p +u*g I) 2 

in which 

,,=x,.,=~ and /+x:+x;). (3) 

Due to [3] and [S], the Green function in the space R2N for the 
degenerate elliptic equation (3) is 

where 

By introducing the norming factor 

CN=27r 7 exp(-pS,(h))dh 
--m 

where y = p/u, the solution to (3) can be represented as 

Consider now a few particular cases. When N = 2, the so called 
hard self-excitation [13] occurs, and the equilibrium (xi, x2) = 
(0,O) coexists with the two limit cycles: 

x: + x; = u; (k=1,2) 

which are stable and unstable, respectively. 
For the probabilities *(Da), \E(D,) of 

regions: 

D,= {(x,,x2):2h4} 

al h- a2 

locations within the 

4= ((x142): ( a, - f1)2 =s 2h Q ( u1 + cl)2}, Cl z=- 0 

respectively, we obtain 

‘k2 ( Do) = 2nC2&w’e-ysz(‘) dt (5) 

q2( Dl) = 2+K2/w3e-~S~(t) dt (6) 
w2 

where wi = e:/2, w2 = (ai - ~*)~/2, and ws = (a1 + c2)*/2. The 
concept of transitions between limit cycles implies that the time 
spent in the neighborhood of each limit cycle is significantly 
greater than the time spent outside the neighborhoods. For this 
reason, we shall resort to asymptotic estimates for “sufficiently 
large” y. Let T be a set: 

T= { R2: (x1,x2)}/D,,uD1. 

Now, note that the function S,(t) has two minima at the points 
t = 0 and t = uf. Therefore, applying asymptotic estimates [ll], 
[12] for the probability \k,(T) yields 

when y+m. 

\k,(T) - 0 
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I I c 0.5 1.0 1.5 
(b) 

Fig. 1. Illustrative S,(h) for (a) a fully stable limit cycle and (b) a fully 
stable origin. 

Using the Laplace method for asymptotic estimates of integrals 
in (5) and (6), one obtains [12, ch. l] 

\k,(Do) 
K(y).= ~ - 

,u.%q (g _ u;)1’2 

\k,(D,) 
2 2 l/2 (7) 

-7qa2-f 

Following standard terminology, the point at which S,(h) at- 
tains its global minimum value, on the interval [0, + co], is called 
a “fully” stable state (authors of [16, ch. 7, sect. 8, example 31 call 
such a limit cycle the “most stable” one), while other local 
minima are termed metastable states. In this regard, the stable 
equilibrium (stable limit cycle) is a metastable state with respect 
to a small white noise perturbation depending on whether the 
situation in Fig. l(a) or (b) is taking place. In other words, a 
long-lasting noise perturbation “pushes” the oscillator to an 
arbitrarily small neighborhood of the stable state associated with 
the absolute minimum of S,(h). It is of physical significance that 
an oscillator with hard self-excitation, under small noise per- 
turbation, can “avoid” the stable limit cycle. 

Resorting to the situation with two stable limit cycles, N = 3, 
one should notice that the only possible transitions can occur 
between limit cycles with amplitudes a, and u3, since the origjn 
and the cycle with amplitude u2 are unstable. The above- 
described solutions for the case N = 2 can be easily extended for 
two stable limit cycles and more. Separating stable and metasta- 
ble limit cycles requires determination of the global and local 

2.0 - 

1.5 - 

1.0’ 

0.5 - 

0.0 0.5 1.0 1.5 20 

(a) 

(b) 
Fig. 2. pi(x) for y =lO, 0: = 2. (a) a$ = 0.49. (b) a: = 0.81. 

minima of S,(h). Additional information will be provided in the 
next section. 

Remark: Out of a large body of literature (e.g., [16]-[19]) 
related to the problem of random perturbations of dynamical 
systems, only [16, ch. 7, sec. 81 mentions a situation with several 
limit cycles. The method used in [16] is essentially based on the 
fact that the dynamical system is quasi-linear and the random 
perturbation is “small.” The authors of [16] make only qualita- 
tive conclusions relying on a quasi-potential and action func- 
tional introduced in [16, chs. 2 and 31. Their construction coin- 
cides with the exact solution based on the function S, (in this 
paper). At the end of [16, ch. 7, sec. 11, one finds the phrase, 
“ . . using such approximations we can make a number of inter- 
esting conclusions” (on the behavior of the oscillator with several 
cycles). However, to obtain the same qualitative and quantitative 
results in their concrete form, we did not need to resort to the 
assumptions or to the analytical machinery used in [16]. 

IV. EXPERIMENTS AND SOME NUMERICAL ILLUSTRATIONS 

All the experimental and numerical results which follow are 
attributed to the oscillator governed by (2) only. An important 
question in regard to this paper is how large the parameter y 
must be for the asymptotic estimates to be appropriate. 

For concrete numerical illustrations of the qualitative effects of 
variations in y and N described in Section III, we resort. to 
examples for the cases of N = 2, 3, and 5. For N = 2, Fig. 2(a) 
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Fig. 6. Block diagram for experimental oscillator built from readily available 
components. 

o-o 0.5 1.0 1.5 2.0 2.5 

Fig. 3. p,(x)fory=l,o~=1.88,a~=1.6,anda~=l.l 

Fig. 7. Stochastic transitions in the phase plane as measured on an oscillo- 
scope for the circuit of Fig. 6, y = 2. Scale setting was 0.5 V/div for N = 2 
with 0: = 2.28 V, 0: = 0.6 V. 

0.0 0.5 1.0 1.5 2.0 

Fig. 4. ps(x) for y = 2, ~2: = 3.3, of = 2.33, ~7: =1.93, 0: ~1.61, ~2: = 0.403. 

Fig. 8. Stochastic transitions in the phase plane as measured on an oscillo- 
scope for the circuit of Fig. 6, y = 2. Scale setting was 0.5 V/div for N = 3 
with of = 1.22 V, 0: = 2.2 V, CI: = 3.52 V. 

o-o 0.5 1 .o 1.5 2.0 

Fig. 5. p2(x) for y = 20, a: = 2, 0: = 0.49. 

and (b) demonstrates the transition of the metastable state to the 
fully stable state depending on the location of the unstable cycle. 
Figs. 3 and 4 present qN for N = 3 and 5, respectively. As seen 
in Fig. 5, asymptotic estimates are in good agreement with the 
exact solution for y = 20, as indicated by the shape of p2 (x). 

The above-described class of nonlinear oscillators is easily 
realizable as compact electronic circuits. The block diagram for 
the noise-excited oscillator is shown in Fig. 6. It is interesting to 
note that only a few years ago, the possibility of realizing such 
hardware in compact form did not exist. The group of experi- 
ments was performed for N = 2, 3, and 5. Figs. 7, 8, and 9 

illustrate the stochastic dynamics of transitions between limit 
cycles. For sufficiently large y, the diffusion process is reduced to 
a Markov process with a finite discrete set of states. From these 
single-exposure photographs, the neighborhoods of stable cycles 
and traces of transitory trajectories are readily discernible. 
Qualitatively, the relative intensities of cycles in each photograph 
are indicative of the time spent in each neighborhood. For these 
experiments, y =l and the value for the covariance of the white 
noise, u, was determined from the rms output meter on the noise 
generator similar to the way described in [2]. 

Finally, the transitional process was recorded digitally in Fig. 
10. A sample-and-hold network introduces a dc offset approxi- 
mately proportional to the rms value of the diffusion process, in 
order to ensure nonzero inputs into the analog-to-digital con- 
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Fig 9. Stochastic transitions in the phase plane as measured on an oscillo- _. .._-._ _-. - -. ~~ 
scope tar the Cxcwt ot l+lg. 6, y = 2. Scale settmg was 0.5 V/dlv for N = 5 

with af=3.3 V, a$=2.33 V, 0:=1.93 V, ui=1.61 V, a:=0.403 V, 
respectively. 

Fig. 10. Digitally recorded stochastic transitions for circuit of Fig. 6 and 
uk’s and y as in Fig. 7. Time scale is 220 ms/div (horizontal axis). Vertical 
scale is arbitrarily adjusted for a convenient display. 

verter. Transitions from one state to another are marked by step 
increases in the average value of the recorded signal due to the dc 
offset. 

V. CONCLUSIONS 

The possibility of experimentally investigating noise-perturbed 
oscillators with a given number of limit cycles was demonstrated. 
This work fills the gap between theoretically conceived physical 
situations and their realization. The authors believe that the 
above-described oscillators will allow for more principal experi- 
ments with white noise in coefficients uk to observe the so-called 
stochastic postponements [2]. 
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Excess Phase Jitter Cancellation Method for SC 
Relaxation Oscillators 

JO& SILVA-MARTiNE AND EDGAR . 
SANCHEZ-SINENCIO, SENIOR MEMBER, IEEE 

Abstract -A practical jitter cancellation method for relaxation SC oscil- 
lators is presented. Two verskle switched-capacitor (SC) oscillators using 
the proposed excess phase ji&r suppression technique are described. The 
jitter and the dependence of the oscillation frequency on the saturation 
voltages of operational amplifiers (op-amp) or comparators are eliminated. 
Therefore, there is no oscillation frequency limitation,, except the one 
determined by the Nyquist rate. Because the frequency of oscillation of the 
proposed SC oscillators depends on a capacitor ratio and a reference 
voltage, the oscillators have excellent stability and accuracy. Experimental 
results showed good agreement with theoretical ones. 

I. INTRODUCTION 

One practical technique for realizing precision monolithic cir- 
cuits that has been recognized is switched-capacitor (SC) circuits 
using MOS technology [l]-[ll]. Several SC nonfiltering applica- 
tions have recently been presented [4]-[ll]. These nonfiltering 
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