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Abstract A motivation and basis for a new 
type of state space mapping which will find 
various applications, including power system 
control centers, is presented. The underlying 
principle involves the characterization of 
pertinent stochastic information in a three 
dimensional manner. Traditionally, such 
information has been manipulated with two 
dimensional approaches. Some features of the 
proposed framework are similar to  
electromagnetic monitoring schemes applied in 
optics and radar backscattering problems, with 
the exception that appropriate means for 
automatic control of the associated stochastic 
events are also provided. 

I. INTRODUCTION 

There is widespread agreement that the state of a power 
system constitutes some sort of a stochastic process. 
Widespread agreement beyond this point is difficult to 
quantify, especially when specific subjects such as state 
estimation, system security, reliability analysis, voltage 
collapse, transient stability, optimal load flow, etc. 
become the focus of attention. As a result, most power 
system control centers rely on a "variety" of techniques. 
The bottom line is that with all the techniques, computer 
automation and algorithms that currently exist, we can still 
not design a power system control center that is fully 
automated (no humans). These problems have persisted for 
years and a contemporary synopsis of the associated 
concerns is found in [ 11. 

By and large, the techniques that are applied are two 
dimensional in nature. The power system is commonly 
referred to as a "grid," the computer assisted display panels 
present two dimensional images (and text) and even the 
underlying algorithms such as load flow, optimal load 
flow, transient stability, state estimation, etc., rely on 
manipulations of two dimensional representations of the 
state of the system. All these efforts, combined with the 
fact that we still don't have fully automated operations 
suggests that, perhaps, it would be easier to come to a 
universally accepted fully automated control scenario if we 
reposed the problem. By drawing upon precepts in a 
variety of disciplines, especially those associated with 

optics and controlled flight dynamics, as well as power 
system dynamics and control, a three-dimensional 
formulation of the power system control problem comes to 
mind. 

Ultimately, the motivation for the proposed approach to 
control in the power system comes from the weather. In 
both the case of a power system and the weather, the 
situation is more one of optimal reactions to a monitored 
stochastic process. Hence, if one wishes to fully automate 
control of the associated power system equipment, in order 
to achieve optimal reactions, it is first necessary to know 
how to optimally react. In many cases, for power 
systems, the character of the optimal reaction is still not 
known. Therefore, conventional operations tend to assure 
avoidance of circumstances to which a viable reaction is 
not certain. By comparison, we cannot control the weather 
at all, yet many means of reacting skillfully are in 
widespread use. Indeed, power control centers often rely on 
weather forecasts to better control their own systems. The 
associated time constants are different and the nature of 
reactions are also different, however, the weather does 
represent a very large scale stochastic dynamic process that 
is spatially distributed over a wide area, like a power 
system. Unlike a power system, the weather presents 
itself to the observer in a three-dimensional format, which 
even a child can understand. Ergo, the motivation for this 
work stems from a desire to present a "picture" of the 
stochastic dynamical system, which is a power system, 
that is more easy to understand, assimilate (and devise 
control algorithms) than what is currently being pursued. 
If such a presentation format is achievable, not only will 
operator initiated controls be simpler to implement, but it 
will likely suggest new approaches to system control, 
especially in the face of uncertainty. Actual 
implementation of control schemes, designed to account 
for uncertain dynamics in power systems, is an area of 
particular interest and experience of the author [2,3]. 

As is well known, the state of the power system is fully 
described by a state vector which is comprised of complex 
quantities representative of the voltages and currents at each 
node in the "grid." The actual observations are typically 
associated with so-called real and reactive power 
measurements at each of the nodes in the system. The 
power flow problem is one of determining the mapping 
from that of power measurements to a state vector. This 
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problem has received widespread attention. Hence, the core 
problem stems from a need to be responsive to real and 
reactive power flow variations as a function of both time 
and position. The purpose of this paper will be to present 
a means for presenting the stochastic process of a power 
system state vector in a manner that is both responsive to 
the needs of a system operator and amenable to future 
control algorithms. 

II. APPROACH 

The first step is to produce a suitable three dimensional 
mapping which intuitively should "paint" a "picture" of 
the power system. In addition, the presentation should be 
made in a sufficiently controlled manner as to allow for 
eventual full automation of associated control operations. 
Under most circumstances, such as normal operating 
conditions, the "picture" should be slowly varying as swift 
variations have a tendency to imply imminent danger. 

As is often the case in the field of nonlinear dynamical 
systems, Poincare [4] has provided the germ of an idea 
which finds widespread application. Today, such 
techniques are often applied in target recognition 
algorithms, especially when the polarization of radar 
signals contains useful information [5] .  The Poincare 
sphere is a convenient means for presenting information 
about polarized electromagnetic radiation. It stems from 
the premise that: 

represents a general plane harmonic wave propagating in 
the z-axis [5 ] .  In this formulation, H = y and V = x 
denote the horizontal and vertical components, 
respectively. Here, the vector p is expressed as: 

P = [ :::$;I 
2 2 2 with I p I = (aH) + (av) and 6 E 6v - 6 ~ .  As can 

be found in any standard reference on polarized E/M 
propagation, the horizontal and vertical phasors (assuming 
constant frequency) maintain a time-invariant polarization 
which is described by the vector p. 

The idea of a stochastic process associated with 
polarization of various EM waves has value in the context 
that the scattered radar returns are seen to result in an 
ensemble of polarized waves whose statistics are useful for 
identifying objects of interest. In the analog to a widely 

distributed circuit (power system), with synchronized 
"monochromatic" operation (60 Hz +/- E), it is proposed to 
consider the discrete observations of real and reactive 
power (or voltage and current) at each node in the network 
and to consider the relative magnitudes and phase of each 
complex phasor between simultaneous observations, at a 
particular node. Hence, the state of a particular node, j, 
will be determined as follows: 

for each time epoch, k. Here, the subscripts V, and I 
denote voltage and current and they correspond to the x and 
y axis, respectively. 

For each node in the network, the state of the system, at a 
given time, is characterized in Figure 1. 

The set Cj = {av(k), 6V(k), aI(k), 6I(k))} of random 
variates will be associated with each node in the network, 
j. Or, as is commonly observed in power systems (and 
optics) to be sufficient, the equivalent set of stochastic 
parameters is reduced to the set 

Vj {av(k), a~(k), WNI, 

where 6(k) = 6V(k) - 61(k). 
analog to Stoke's [6] parameters for a power system: 

Hence, by defining the 

a multi-dimensional framework for characterizing the 
stochastic nature of the power system dynamics is 
proposed. s2 is directly related to so-called real power, P, 
and s3 is directly related to so-called reactive power, Q, 
where the complex power at each node is commonly 
specified as S = P + jQ. Systematic manipulation of such 
quantities is shown in [7]. The intensities provided by so 
and s i  will be useful in determining which base voltage 
and power is associated with a particular node [8]. Note: 
the symbol ( ) denotes ensemble average. 

At each individual node, these parameters will vary 
according to the statistics of the underlying process, which 
is ultimately a random process akin to people turning 
lights on and off according to their own prescribed 
interests. In the following sections, these process 
variations shall be generally characterized with some 
simplifying assumptions about the associated statistics. 
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Keeping in mind the "polarized" nature of complex power 
at each node in the network, a more indicative set of 
stochastic variables (as compared with Vj) comes to mind. 
Since power system tend to be slowly varying, it is 
useful to "watch" for apparent "motion" in the shape of the 
associated ellipse which characterizes the state of each 
node. The instantaneous intensity is defined as: 

I(k) = aV(k)2 + aI(k)2 = a2 + b2 = so, 

which takes advantage of the geometry of the ellipse. If 
we consider the ellipse to be in the x-y plane and I is 
positive in the z direction, the state ellipse for each node 
will "swivel" around the z axis  according to the angle x, as 
shown in Figure 1. This angle, x on the interval [ -p 5 1 

x c $ ] is defmed as follows: 

tan 22 = (tan 2a)cos 6, 

with 

Finally, it is necessary to keep track of the ratio of the 
a minor axis, and the major axis, b. The quantity, E = - is 
b 

defined for this purpose. For convenience, the quantity, 

will be used to characterize the shape of the ellipse, 
without loss of generality. 

For a given power system load under normal operating 
conditions, it is worthwhile to assume (at least initially) 
that the value of 6 will be uniformly distributed over the 
entire range of [ -A, A 3. This assumption can be refined 
later. In addition, for convenience, we assume that the 
complex vector Xj(k) is gaussian distributed [91. For a 
zero mean process, the p.d.f. for the state ellipse for each 
node is determined as: 

where 

2 0.5 2 0.5 
M(x, h) = l-Phih-P(l-hl ) (1-h ) COS (2X-xl). 

This follows directly from [9] and is also presented in [ 10, 
equations 3.24 and 3.251. The notation ( )1 indicates an 
average or nominal value and these quantities, in the above 
equation, are defined as: 

S? 

s2 
tan 2x1 = 

0.5 
(polarization). 

(SI2  + s22 + s32) P =  
SO 

In the context of this presentation, the precise nature of the 
p.d.f. is not the main point. What is important is the fact 
that such a presentation exists and that it can be used in 
conjunction with the probabilistic detection scheme of the 
next section. Alternative representations are also possible 
and exist in the literature. 

III. IDENTIFICATION and CONTROL 

In addition to the individual nodal variations, there are 
macroscopic properties which result from the nature of 
power systems themselves. Most noticeable is the fact 
that since a system operates at various voltage levels (with 
correspondingly different power levels) a suitable three- 
dimensional subset of {so, s ~ ,  s2, s3) will provide 
observations from a variety of similar loads which will 
tend to coagulate about specific regions in the three 
dimensional space, at least under steady state operations. 

Ultimately, for control and identification (decision 
making), it will be necessary to determine decision rules 
based on the observed three dimensional mappings of 
interest. If we assume that so is mapped to the z-axis, and 
also assuming a suitably chosen x and y axes, we can 
envision an entire power system grid described by a series 
of ellipses at varying intensities, with certain 
concentrations of ellipses at various points along the z- 
axis. If we consider the ellipse to be the vertebrae of a 
backbone, with each having its own shape and orientation, 
we can imagine the power system to be similar to a 
backbone with vertebrae that are slowly changing shape 
and orientation at relatively constant locations in the z 
direction. Unusual events will be marked by a sudden 
twisting or "rupturing" of the individual vertebrae. Hence, 
a suitable control strategy should be composed of 
something that is able to detect sudden twisting or 
turning, or other shape distortions, as projected to the x-y 
plane. 
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Random Perturbations", IEEE Transactions on 
CAS, CAS-34 No. 6 (June), 1987. 

2 aV 

Figure 
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In principle, what is needed is a "sheath" that can be 
imagined to encase the "backbone" like a skin. This skin 
should be sensitive to the motion of the backbone, but 
also have an ability to vary with slow variations of the 
backbone. Such a control mechanism will likely have 
elliptic symmetry in the x-y plane. 

As it turns out, the work of the author in the area of multi- 
stable devices 111-151 exactly meets the required need. 
Basically, by choosing the domain of attraction for the 
inner most limit cycle, for a suitable multi-stable device 
[13], to circumscribe the ellipse associated with each node, 
a sudden twisting or change in shape will cause the multi- 
stable device to change state. This assumes that 
information about the state vector for each node (or group 
of nodes), Xj(k), is periodically provided in the form of 
initial conditions to the associated multi-stable device [14]. 

The time varying nature of the shape of the ellipse can be 
accounted for by slowly varying the shape of the domains 
of attraction. Assuming such a system were to operate in 
real-time, this would provide highly localized information 
regarding the change in system dynamics as well as avoid 
false indications of pertinent variations. With such a 
capability, a framework for suitable control actions follows 
directly. 

IV. CONCLUSION 

This work has provided a motivation and approach for 
altering the means by which the stochastic dynamics for a 
power system are represented in order that more suitable 
control actions (reactions) are likely to occur. 
Additionally, the presentation is general enough to allow 
for other applications involving distributed sources of 
electromagnetic radiation. 

Other three dimensional formulations are possible and 
more conventional identification schemes may indeed be 
appropriate. However, the one presented appears to be well 
suited to the needs of more conventional representations of 
complex power and well developed mental images of the 
dynamics associated with each transmission level in the 
utility grid. A more thorough analysis will follow in a 
later publication. 
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