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STOCHASTIC OPTIMAL ENERGY DISPATCH
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Abstract - This paper presents a useful algorithm to incorporate the
effects of uncertain system parameters into optimal power dispatch. This
method employs the multivariate Gram-Charlier series as means of modeling
the probability density function (p.d.f.) which characterizes the uncertain
parameters. The proposed method is a direct ettelilob of existing tech-
niques: therefore, minimal additional computation effort is necessary.
Potential applications include the calculation of probabilistic parameters
(eg., probability, expectation) relating to power dispatch. An example of
such a parameter the probability of a bus voltage out of range during
optimal dispatch. A practical example is pursued to demonstrate the useful-
ness of the mrethod.
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1. INTRODUCTION
The economic dispatch problem of energy systems main-

tains increasing importance as operating costs continue to
escalate. The aims of the techniques described in the paper
are to identify sources of uncertainty in the optimal
dispatch problem and to calculate the effects of the uncer-
tainties in dispatch algorithms. Uncertainty is introduced
into system analysis from various sources including:

1. long and short term forecast error
2. measurement or telemetering errors
3. system configuration error.

Therefore, in this paper it is propossed to consider uncer-
tainty in optimal dispatch for the purpose of both system
operation and system planning. In the case of system opera-
tion, the appropriateness of future dispatch schedules may
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be assessed. In the case of system planning, alternative
plans may be evaluated on the basis of their dispatch. In
both cases, the probability of occurance of operating
scenarios may be evaluated.

The various sources of error are grouped into a single
parameter vector, p,

P = Li QLi ,ARC(Yjk) .IYjkl
where i represents load busses. Figure 1 illustrates stand-
ardized (zero mean and unit variance) variations of a typical
load versus time (days). Superimposed is a curve which is
intended to represent a typical approximation to the actual
load variations. Since optimal dispatch considers only a
static (as compared to dynamic) optimization of the objec-
tive function, the dispatch is evaluated at times such as
those indicated by a,b, or c. Clearly, there is some uncer-
tainty in the actual value of the demand at points a,b, or c.
Neglecting the effects of this uncertainty introduces error
into the deterministic optimal dispatch algorithm which may
lead to unnecessary additional operation cost.

To make further analysis more convenient, the remaining
energy system parameters are grouped into the vectors x
(state vector), and u (control vector), where x is,

x = 4RG (V), IVzIJ
and u is,

U = iP03 ,ZIVmT
In the above vectors, k, 1, j, and m represent all load busses
except the slack, all load busses, all generator busses except
the slack, and all generator busses respectively.
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X AXIS - time (days)
Y AXIS = standardized load data

Figure 1 Typical loading of a power system
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To account for the random behavior of the loading condi-
tions (or another condition), it is assumed that the com-
ponents of the p vector may be modeled as,

pi(nr) = E(pC(n))+Ap{(n) n = a,b,c.
The statistics of the tip variations will be studied assuming
strict sense stationarity [1] in any given time interval. The
fluctuations Api(n) are represented by a probability density
function (p.d.f.) which is known or may be approximated by
random sampling. The stochastic optimal energy dispatch
(SOED) problem concerns the minimization of a cost func-
tion, F(x,u), subject to the random fluctuations of p. In the
deterministic optimal dispatch problem, a deterministic
optimal control vector ut is found; the stochastic optimal
dispatch problem solution results in a p.d.f. representation
of the changes in the optimal control vector tui about an
operating point. The random fluctuations in p are approxi-
mately linearly related to u allowing the p.d.f. of tui to be
calculated from the p.d.f. of Ap. The p.d.f. of tiC provides
useful information about the likelihood of certain events
associated with uC. The probability of events pertaining to
u are valuable in assessing the ability of a system to per-
form at minimal cost; further, this formulation is a more
accurate and realistic representation of the optimal
dispatch problem.

2. STATISTICAL THEORY

The solution of the SOED problem requires theoretical
development in several statistical areas. These areas
include the multivariate Gram-Charlier series and transfor-
mations to normality. These topics are briefly discussed in
this section; however, more detail is presented in the appen-
dices. The multivariate Gram-Charlier series is utilized to
represent an n dimensional p.d.f. [2]. The MGC series is an
infinite series composed of Hermite polynomials (see
APPENDIX A). The p.d.f. characterizes a data set of indepen-
dent identically distributed random observations found by
substituting the sample moments of the observations into
the MGC series expansion. (Note: the variates of the multi-
dimensional random vector. modeled by the MGC series need
not be independent and, in fact, are usually correllated).
This procedure is done for only a finite number of terms,
resulting in a truncated approximation to the actual p.d.f.
Accurate results are usually available from approximations
involving up to all permutations of fifth order terms. The
MGC series is primarily limited in application due to storage
limitations. However, p.d.f.'s of order n < 10 are readily
accommodated.

The MGC series converges more rapidly when the stand-
ardized random vector being modeled, z, is approximately
multivariate Gaussian,

EXP ( zZ(COV(z ))-1z)
f (z) ( ) DET(COV(x))

series representation of an n dimensional Gaussian density
reduces to one non-zero term. For densities of practical
concern, enhancing the normality corresponds to reducing
the number of terms necessary to accurately represent the
p.d.f.

3. OPTIMIZATION THEORY

This section considers the deterministic optimal dispatch
problem and an associated linearization. A comprehensive
survey of optimal dispatch techniques has been given by
Happ [8].

The objective of optimal dispatch is to minimize some
cost function. Often, this function is a quadratic generation
cost function,

No
F(x.,u) = YBOt+3iPOA+B2iPA

i=1

where NG is the number of generators in the system. This
particular expression is a function of x only at the slack bus
and a functionl of u only at all other generator busses in the
system. The LaGrangian is formulated as,

L (x,U,X) = F(x,)+XT (x,U,P)
where G(x,u,p) are the standard equality constraints derived
from Kirchhoff's Laws. At the optimum, the following condi-
tions are satisfied,

O:=aF +[-aC ]T =
=OF+[l0]rT

L= .+[ aG]%x = 0

LA = C(x,u,p) = 0.

The differential form of these equations yield,

-L. = Lxx4Ax+L_4A +JTAX

-Lu = Lu4Au+Lu, Ax +KTAX

-Lx = JfAx+Ku

J=
xOx

Simultaneous
results in [6],

K = On
oUv

solution of the above differential equations

Ax = -J-,0-S AU

where n is the dimension of z. Transformations to normality
[3,4] have application to this study as a method for reduc-
tion of the approximation error introduced by truncating the
series. The required number of statistical moments to be
calculated for use in the MGC series rises sharply with the
number of terms retained. Therefore, any method which
permits early truncation of the series is highly desirable.
The conditions under which improved accuracy in the trun-
cated MGC series is attained are outlined in [5]. Various
methods for enhancing the joint normality of a general p.d.f.
are available but this paper relies on a more novel polyno-
mial transformation (APPENDIX B). Each of the components,
zi, of an n dimensional random vector z are transformed to
enhance the normality of its associated marginal density.
While marginal normality does not insure joint normality
(except if all the variates are independent), referenc [3] has
shown that "enhanced" joint normality will result from mar-

ginal transformations. The usefulness of these transforma-
tions are more apparent if the reader observes that the MGC

AA = -[jT]JT(Lx+Lxxtx+Lxutiu)

S =-K
and

Ati = -HRED GE
where

FRED = Ltu- S-STL+STLx S

GE = Lu_STLX [L=-STL±,]j1.G
The above equations are solved iteratively until subsequent
improvements are within the desired tolerances.

A linearized approximation relating u and p is derived by
noting that at an optimum solution,

LU(U,p) = 0
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where,
U = (x,u,X)T.

For small perturbations this is expressed in differential form
as,

Luu(Ut,p)dU +Lu,(Utp)dp = 0,
which is solved to yield

gu =-(¼)'Lu) dp.
Expressing this in rnore detail,

[dx' LXXz L jT -
HuL, Lu4 Kr1ILUp,dp,d X. J K 0rLpp

it is apparent that all the submatrices are already available
from the optimal dispatch algorithm above. Hence, small
changes Aut -are easily calculated from small changes Ap.
For convenience the matrix R is defined as,

R = -[Luu]-'Lup.
4. DESCRIPTION OF THE ALGORITHM

The solution of the stochastic optimal dispatch problem
incorporates the results of APPENDICES A and B to formulate
this algorithm:

1. Obtain an initial optimal operating point by a
second order optimization method retaining the
various second order partial derivatives of the
LaGrangian for future analysis.

Wab

rz1
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2. Identify and tabulate parameter variations, Ap.
3. Obtain and model constraints on controls and sys-

tem states.
4. Calclulate the linear relation between Au and Ap,

AU = RAp

5. Transform Au to approximate.normality (APPENDIX
B).

6. Represent the p.d.f. of Au via the MGC series
(APPENDIX A).

7. Calculate desired probabilities of events utilizing
the integral form of the MGC series.

The software for this algorithm has been implemented and
an illustrative example is pursued.

5. PRACTICAL EXAMPLE

This section presents an example application of the pro-
posed techniques to a practical power system. The system
chosen is similar to a reduced equivalent of the Public Ser-
vice Indiana (PSI) system. This system contains five load
busses whose demands were obtained from actual PSI data
which have been magnitude scaled upward. An eight bus sys-
tem was chosen to illustrate the technique for purposes of
this paper. Much larger systems are treated in the same
way. (note that the transformations of the variates of Au"
permit handling of large systems without extensive computa-
tional problems associated with the MGC series.)

The proposed network for study is shown in Figure 2, with
corresponding line impedances found in Table 1. The line
impedances were calculated for 230 KV and 345 KV lines as
the following per-unit values (using a 100 MVA base):

Z(23S0V) = 9.86 X i0-5 + j6.45 x 10-4

Z(s45Kv) -2.21 x; 10-5 + j3.16 x 1ot

The system shown is a scaled equivalent of the PSI system.

Table 1

Example power system line impedances

From

I
1
2
3
3
4
5
6
8
8
4
3

rn
= transmission ine

0 = load bus

0 = generator bus

[E = coded bus identifier

( ) = line voltage £-t in KV

Figure 2 Example Midwestern power system

Line
To

Resistance (pu) Reactance (pu)

6 0.02500
2 0.01625
3 0.00875
6 0.01625
4 0.00438
5 0.00500
6 0.01125
8 0.00364
7 0.00448
5 0.00308
7 0.00813
7 0.01250

0.16340
0. 10621
0.05719
0.10621
0.02860
0.03268
0.07353
0.05213
0.06416
0.04411
0.05311
0.08170

With the system configuration known, attention is
directed to determining appropriate loading. Available infor-
mation includes the hourly real and reactive power, P1 and
QL, at busses 1 through 5. The intent is to accurately deter-
mine representative values for the stochastic variations , Ap,
about a proposed operating point of the system. Represen-
tative values are found by modeling variations with an auto
regressive (AR) [9] equation of the form,

yi(t) =AiyY(t-1) +A7yi(t-7) + cio(t)
where

1. yi(t) = process changing as a function of time,
with time measured in discrete daily increments

2. A1,A7 = constant depending on y(t)
3. w = Gaussian standard measure random noise.
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The form of the model indicates that the future value of the
loading process is dependent on the most recent daily value,
as well as the value which was obtained a week earlier. This
is very reasonable for a power system demand since it is
likely that a demand is a function of the weather during a
particular week as well as the particular day of the week.
The coefficients were calculated as,

The coefficiernts are:

Bus B ci i

6
7
8

1000.0
250.0
1000.0

200.0
175.0
250.0

Bus Al(PL)

1 2.003024E-01
2 9.472535E-01
3 7.813616E-01
4 4.146909E-01
5 7.395055E-01

Bus A 1(QL)

A7(PL)

6.840934E-01
1.825297E-02
1.2 12142E-01
5. 190445E-01
1.986481E-01

A 7(QL )

1 2.880077E-01 4.372310E-01
2 8.974314E-01 4.620967E-02
3 7.001010E-01 1.245421E-01
4 3.930626E-01 4.172327E-01
5 7.519240E-01 1.410025E-01

Here (PL) and (Qj) denote coefficients pertaining to the real
and reactive components of the demands of the p vector.
The expected value of the AR equation above is successively
calculated in order to evaluate one step ahead forecasts.

The resulting forecast values are shown by the dotted line in
Figure 3, for time greater than 100. Labelling the forecast
values of yi, as y* , and the actual value of the process as

Ye, the variations, Ap1 are found as

(YVi-Ya) = APi-
The last component in the system under study is the gen-

erators which are responsive to the load demands for the
system. Associated with each generator is a quadratic cost
formula

Ci = Boi+B jjP +B2i(PG)

1 .000 -

.000-

U,

X
cr.

-1.00 -

-2.000-

Peak daily demand plotted

-50.0 I .0 50.0 100.0
X AXIS

150.0o

X AXIS - time (days)

Y AXIS QLI (standardized)

actual

------ - predlcted (time > 100)

Figure 3 Prediction of QLl versus time

200.0

A second order optimization method is employed to
determine the initial optimal settings of the control vector

PG7
jv9

(note: the slack bus has been eliminated from the control
vector for convenience) based on the particular loading con-

ditions presented. The initial optimal dispatch is shown in
Table 2.

To test the accuracy of the SOED algorithm, the Au varia-
tions, which are readily calculated from the linearization
involving the R matrix, are determined. Utilizing the polyno-
mial transformation, Au. is transformed to the more normal
tAu. For this example, only the first two variates of the Au
vector are transformed. For a standard measure (zero
mean and unit variance) normal variate, all the cumulants
[4] except the second are zero. The second cumulant is
unity. Therefore, a measure of normality is how close a gen-

'A

0

e

E3
VI

250.0

0.430 -

0.420 -

0.410 -

0.400 -

0.390

0.380 -

0.370 -

0.360

0.350

0.340 -

0.330

0.320 -

0.310

0.300

0.290

0.230

0.270

0.260

0.250

0.240

0.230

s 0 2

s20
52

0
53

54 0

--- normalized

raw

3 4 5

2 3 4 5

2 3 4 5

2 3 4 5

I I I I I
6 7

6 7

6 7

6 7

8
8
8

8

truncation poin
of MGCA series

Figure 4 Truncated MGC series versus truncation point
for case 1

25.0
10.0
40.0
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Table 2

Initial optimal dispatch

BUS

1
2
3
4
5
6
7
8

Iv'
(pu)

0.9831
0.9889
1.0391
1.0442
1.0167
1. 1270
1.1837
1.0000

p
(pu)

1 -2.000
2 -1.500
3 -5.000
4 -3.500
5 -6.000
6 4.586
7 11.956
8 2.214

ARG (V)
(deg)

-16.650
-14.998
-9.610
-7.656
-8.676
-2.348
5.497
0.000

Q
(pu)

-0.4000
-0.5000
-0.5000
-0.5000
-1.0000
6.0141
8. 1451

-5.4656

Injection notation used. 100 MVA base.

eral random variables' statistics approximate those of a nor-
mal random variable. The first and second- cumulants of
both Au and Au' are zero and unity respectively, as a result
of the standardization. Relative improvements in normality
are evidenced by reduction of the magnitude of higher order
cumulants as shown;

cumulant AuI Auz

1 0.0000 E+00 0.0000 E+00
2 1.0000 E+00 1.0000 E+00
3 4.7703 E -01 4.7974 E -01
4 7.9165 E -01 8.5183 E -01
5 1.0893 E+00 1.1662 E+00
6 -1.5203 11+00 -1.4143 E+00
7 -1.9120 E+01 -1.8965 E+01
8 -8.2611 l1+01 -8.7134 E+01
9 -1.2691 11+02 -1.6268 E+02
10 1.0281. E+03 9.2500 E+02

Au3 AU4

0.0000 E+00 0.0000 E+00
1.0000 E+00 1.0000 E+00
1.1020 E -02 2.2476 E -01
-1.2466 E -01 7.2908 E -02
5.6033 E -01 5.5781 E -01
4.1288 E -01 4.9251 E -01
-5.1265 E+00 -7.5227 E+OC
-1.2604 E+01 -2.8550 E+01
4.0710 E+01 1.6456 E+01
1.9035 E+02 3.7734 E+0O

3225

Case 1.

This example considers the system such that all genera-
tors are operating at their derated maximum value. It is
desired to evaluate the probability that under usual operat-
ing conditions (voltages are within limits, no faults, no
outages) the generators would be forced to operate in the
region above their derated maximum yet below their abso-
lute maximum. In general terms, the above situation may
be referred to as over-stressing the generators. Specifically,
the statistics of p at the known operating point were found
and the integrated MGCA was employed to evaluate the joint
probability,

4.587 < P06 < 7.587
11.956 ;5 PG07 13.956

Prob 1.0270 V61| 1.2270
1.0837 5 1V71 1.2870

This calculation illustrates the capability of the proposed
SOED algorithm to calculate probabilities of specific operat-
ing scenarios under optimal dispatch.

The resulting probability of occurrence versus the
number of terms in the truncated series is shown in Figure
4. The transformed MGC series representation has smaller
oscillations as it approaches its limiting value.

To assess the accuracy of the MGCA, one hundred Monte
Carlo simulations of the operating conditions were run.
After considerably more computational effort, 44/100 simu-
lations resulted in the control vector u assuming a value
between the specified limits. This agrees well with the
predicted value of the MGCA series considering the reliability
of Monte Carlo simulations.

Case 2.

In this exmInple the probability that the generators are
operating within a range ±2 p.u. about their derated max-
imum and that the voltages at this bus is ±0.1 p.u. is
assessed. This situation translates to a scenario where the
system is terrned secure. The results of the Monte Carlo
simulation indicate that this situation occurred 98/100
times. The MGCA series results for the transformed Au vari-
ations are shown in Figure 5. Mathematically, the probabil-

---- normalized

0.978 I

cumulant Aui
1 0.0000 E+00
2 1.0000 E+00
3 0.0000 E+00
4 0.0000 E+00
5 0.0000 E+00
6 -5.5651 E-01
7 7.4838 E -02
8 -2.2850 E+00
9 -6.3074 E+00
10 9.1345 E+01

0.0000 E+00
1.0000 E+00
0.0000 E+00
0.0000 E+00
0.0000 E+00

-6.5554 E -01
3.5384 E -01
-7.6124 E -01
-1.1495 E+01
7.3532 E+01

The statistics for the Au' variations about an operating
point are used to calculate various probabilities of occu-
rance. These probabilities are obtained by direct applica-
tion of the integral form of the MGC series. Two sample
cases are shown below.

0.977

0.976
iu
'Z

0. 975

0 0.974
E0.97

'Ao0.973

/r
_ /

/~~~~~~~~~~.0

0.972 I

0.971 1-

'.4
sI, 0

s2 0 1

s3 0

54 °

I I I
2 3 4 5 6 7 3
2 3 4 5 6 7 8
2 3 4 5 6 7 8
2 3 4 5 6 7 8

truncation point
of MGCA series

Figure 5 Truncated MGC series versus truncation point for case 2
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ity for Case 2 is expressed as

2.587 5 PG6 5 7.587
9.956 < PG7 . 13.956Prob 1.027 VG 1.2270
1.0837! 1V71 1.2870

Again, the Monte Carlo simulations confirm the accuracy of
the results obtained hb the MGCA series.

Note tht thf technique £6 pKmawvtty a sqytem
ptanning tooZ athet than an opexwting pkocedute zince
computation time, whiLe not ptohibitive, £6 not 6a4t
enoagh to be on-tine.
6. CONCLUSIONS

The uncertlainties present in electric energy system loads
and configuration effect optimal power dispatch. These
uncertainties are effectively accounted for through the use
of a sensitivity technique which requires minimal calculation
above that of a second order optimal dispatch formulation.
This paper has presented the computational details of the
stochastic optimal energy dispatch problem. The SOED
algorithm employs the multivariate Gram-Charlier series to
statistically model the p.d.f. of the control vector. The appli-
cability of this series has been limited (in the past) by the
high computational requirements of calculating high order
statistical moments. The method described obviates some
of the difficulty through a polynomial transformation of the
variates to be modelled in order to enhance normality. The
transformation process permits truncation of the series
early, resulting in high accuracy with relatively little compu-
tation. The techniques proposed have been tested with an
eight bus equivalent system.
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APPENDIX A. THE MULTIVARIATE GRAM-CHARLIER SERIES
The MGC series is an infinite series representation of a

p.d.f. in terms of the statistical moments of the variate
being statistically modelled. The folowing is a presentation
of the MGC series and its application to the solution of the
SOED problem. For simplicity the MGC series is presented
without derivation (for further detail see [5]). Defining

X = (XI, X2. .........,x,,.) and dx (d±1 dx2 ....... dx,), the
MGC series is

fn 1n Hs (x )G(x,)
f (x) EIf Hs, xi)(f s P )

s...Sn== =1 pl Sp.

where

CG ) = 4 EXP[-4 ]

EfHHs(xD} = ftkH5 (xti)Jf (x) dx

and H;, is termed a Hermite polynomial. The Hermite poly-
nomials are defined implicitly by

2l H(x)EXPrtx- _ i i!
2 i=o

The salient property of these polynomials is that they are
othogonal. The first five Hermites are,

Ho(x) = 1
H1(x) = x
H2(x) = x -1
HE(x) = x3-3x
H4(X) = X4-8x2+3
H5(x) = x5-10x3+15x.

The Hermite polynomials are polynomials in x which implies
that the expected value of the Hermites are functions of the
moments of x. Substituting the sample moments of x into
the various expectations of products of Hermites in the MGC
series provides the means to represent a multi-dimensional
density when only sample observations are available. The
expectations of the Hermite polynomials are evaluated more
directly by evaluating sample Hermite expectations. This is
accomplished by substituting the observation data directly
into the expressions for the Hermite polynomials.

Often, the actual multivariate p.d.f. is not as important as
the integral of the p.d.f., which represents the probability of
certain events. The integral expression of the MGC series is
easily evaluated due to the properties of the Hermite polyno-
mials. Specifically,

f H, (x)G(x)dx = -HL_1(x)G(x).
The error function (ERF) is defined as,

ERF (a) = f (x)dx,
a

which for computer implementation is approximated by [7],

ERF( )y± 1-EXP Z )]2+ a<0
2 2 Tr - ~a>0'

Recognizing the uniform convergence of the MGC series [5],
each term of the series is integrated separately and the
integral expression becomes,

bI= ,ff E0 H 1$n Hs, (XY)G(x4)
z=f.f 5 EIH11HS,(Xi)I*(H
a1 ans I...s,O= '=I1

nnHs,(xi) 1n
= E EIJ ! JHVII_&(a,)C(t,)-Hs _t(bp)G(bp).

s1J...8,,=O0 1=I SI! jjCiJ

This formula: provides an easy means for assessing desired
probabilities.

APPENDIX B. TRANSFORMATIONS TO NORMALIXTY
A polynomial transformation to normality is considered in

this appendix:. The transformation described enhances joint
normality by transforming each of the variates of a random
vector to approximate normality. All variates considered
are in standardl measure (zero mean and unit variance). For
a standard measure Gaussian density, G(z),
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7 =c= E[zl] = 1*3*5*....*n-1, i = 2,4,6,...n

ai0 =E[zt]=O i= 1,3,A5....
Consider the moments, nj, of a general sample marginal
density. These moments are compared to those of G(z) as a
measure of normality as,

Q=
i=I

where 1 is the order of the polynomial transformation operat-
ing on the untransformed data, y, such that

zi = a.+aiy+.+aty,t.

To approximate normality, the a{'s[i=1,2,....1L must be
determined to minimize Q. This is accomplished by a gra-
dient technique:

1. Estimate values for the ai coefficients in the poly-
nomial transformation.

2. Calculate the sample moments of zi for i 1I. Label
the se moments n t,[i= 1, 2,....1 ].

3. Perturb each of the as coefficients by a small
amount e, such that ai = a,+e.

4. Recalculate the sample moments ng,[i1,2,...Z],
utilizing the ak's.

5. Label the vector a = (a1,a2,. ...,a1)T and the vector
= (m1,m2,..-jnj,13. Then by Euler's approxima-

tion
amAm -Aa
a

whe:re An-k = nii -ms and Aai = ei

in =
Ga

7mL -m I mn I -7nm
...............

CI0

ml M-n2 mf.-
El

..............
E

RIC

5. Successively calculate values of vector a by

aflW = [ n](OM-m)+aoId
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where m° is the vector fo moments for a standard
measure random variable.

7. Return to step 3 if a'eW is not equal to a°, other-
wise the solution vector has been found.

This procedure is repeated for each of the yi variates result-
ing in approximate joint normality of z. This is useful in
improving the truncation error of APPENDIX A. (Note: limits
of integration must also be transformed.)
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Discussion

M. E. El-Hawary (Memorial University of Newfoundland, St. John's,
Newfoundland, Canada): The authors have presented a very interesting
and pioneering paper in the area of application of probabilistic methods
to optimal power flow. This discusser wishes to commend the authors
for a clear and well written paper.
The proposed procedure is essentially an optimal power flow follow-

ed by evaluation of the statistical properties of the control variables
given statistics of the parameters. A possible alternative that may be of
interest is to perform a sensitivity analysis of the optimal power flow.
Combining this with the parameter statistical properties would then
result in the required statistical properties for the control variables. The
authors' comments on the advantages of their method over this simpler
procedure would be appreciated.
A major source of uncertainty in optimal dispatch is that associated

with the cost coefficients Bo0, Bl,, B21. Is the proposed procedure
capable of handling this situation? Would the authors comment on the
reasons for taking a deterministic cost function instead of a stochastic
one involving the expected cost.
A minor point is related to the terminology employed in labelling the

procedure as an energy dispatch. It seems more appropriate to denote
the procedure in terms of optimal power flow. This does not in any way
distract from the clear contribution this paper makes to power systems
engineering.

Manuscript received February 19, 1981.

P. W. Sauer (University of Illinois, Urbana, II): Viviani and Heydt have
made several interesting contributions in this work. They have suc-
cessfully incorporated uncertainties into the optimal energy dispatch
algorithm and illustrated a novel approach to the computation of
multivariate proabilities. The methods appear to be applicable to many
other optimal load flow routines as well. The transformations to nor-
mality presented in Appendix B made the multivariate Gram-Charlier
series a practical method for computing output statistics. In this ap-
proach, an hth order polynomial transformation was used to minimize
the difference between normal and non normal variable moments.
Would the authors pleaset comment on the choice of the order 1? Does
the transformation to normality improve as I is increased? If so it would
appear that there is a trade off between the benefits gained in the Gram-
Charlier series calculation and the effort required to minimize Q.
Would the authors also please comment on their selection of Q? It
seems that minimizing a weighted sum of squared errors would be more
logical since the Q shown may have positive or negative terms.
The cost function used in the paper reflects the total cost of operation

for a given generation dispatch. With the statistics of all PG1 available
from the SOED algorithm, the expected range of the minimum cost
could be obtained easily. Have the authors considered the significance

of computing this range as an indication of the possible variation in
operating costs and therefore a projection of profit variation? Clearly
even the mean value of this minimum cost would be different from the
base case solution due to the quadratic variation in PG.
The methods presented in this paper may have further application in

other optimization routines. The minimum time restoration problem
must dispatch both load and generation in an optimal sequence. The
uncertainty of load on a bus following an outage must be considered in
this algorithm, and the results of this paper may prove very useful in
that regard. The authors are congratulated for another fine addition to
the stochastic power flow area.

Manuscript received March 3, 1981.

G. L. Viviani and G. T. Heydt: The authors appreciate the valuable
comments of the discussers. We shall consider their questions in-
dependently.

Dr. Sauer has raised an interesting point concerning the order of the
polynomial transformation to normality. Consider the case that all the
moments determine the p.d.f. For a particular univariate normal densi-
ty all the moments are unique. If the quadratic cost function, Q, is
chosen such that the mo's are those of a standard measure normal
variable, increasing the order of I toward infinity will assure normality
in the limit. For finite I it is difficult to determine a functional relation-
ship between l and the degree of normality. The authors chose I based
on its relative merits: it provided significant improvement in normality
without undue computational effort. A more conclusive relationship
would be desirable. Practically, the marginal transformations to nor-
mality are a useful technique for enhancing the accuracy of a series
representation of a p.d.f. Dr. Sauer is correct in noting the
typographical error in the equation for Q. The equation for Q is,

Q o
Q = (mi-m.- 2

i =1-
Dr. El-Hawary indicates the similarity between sensitivity analysis

and the approach taken in this paper. The approach suggested by Dr.
El-Hawary is essentially the same as the one chosen by the authors with
the exception that the authors' analysis includes a transformation to
normality to enhance the accuracy of the series representation of the
p.d.f. We are in agreement with Dr. El-Hawary concerning the'uncer-
tainty associated with the cost coefficients. Unfortunately, this research
does not address that important problem.

Drs. El-Hawary and Sauer have both raised the question of a
stochastic cost function. The aim of this work was to produce a tool
which would be useful from an operational standpoint, i.e., to devise a
methodology for determining the proper settings on control variables
with respect to uncertainty in the parameter vector, p. Characterization
of the cost function as a random variable would be a useful and impor-
tant extension of this existing analysis.

Manuscript received March 3, 1981.
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