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Abstract-This paper addresses the practical realization of a
complex hierarchical control system, which is able to maintain
controllability and observability conditions in a fault tolerant
manner for a variety of ion implanters as well as other related
systems.

I. INTRODUCTION

The primary goal of any control system is to make the system
observable and controllable [1]. A primary problem, in this regard,
is to adequately determine state and appropriately operate under an
operational space that constitutes a full range of typical scenarios.
Le., the control system must be able to maintain controllability and
observability in the event of exceptions as well as in a variety of
operational modes. Many control systems are designed to excel in
one mode and not another. For example, an auto-pilot works for
straight and level flight and manual intervention is required under
other conditions. Similarly, typical control systems for implanters
require manual intervention or else lose observability and
controllability as a rule rather than an exception. The Varian
Control System (VCS) is designed to maximize the conditions
under which controllability and observability of the system are
maintained.

Moreover, given the importance of the process integrity
considerations associated with the main function of an ion
implanter, integrity is something that can be measured and, in the
case of VCS, the state of the system can be replayed at a future
time.

The concept of a hierarchy has been around for a while, but it
remains difficult to precisely quantify mathematically. It is a
necessary aspect of modemn control system implementations;
therefore, its origins are of interest. Mesarovic provided some
foundations [2], but formalized realizations for large-scale systems
are not easy to identify.

The idealized set of functional characteristics is as follows:

1. The control system must be partitioned as the sheer
complexity and magnitude of the system requires this for
practical considerations from an implementation as well as
a comprehension perspective.

2. The controllability and observability must be determined
within each partition in a periodic and deterministic manner.
In much the same way that an integrated circuit is
synchronized by a periodic clock, the control of the system
in question must be synchronized in order to maintain
controllability and observability.

3. To formally confirm the above principles as well as for
audit and analysis purposes, observability and

controllability must be demonstrable via an ability to replay
whatever happens in the system, past or present. Such a
capability is a prerequisite for predictive capabilities [3],
which are presently under development.

4. The means for implementation of the above must be
‘reusable’ in the sense that once applied to a particular
system, the next system should be at least as fast or faster
(assuming a high degree of reuse) to implement.

NOTE: Simultaneous realization of all of the above
constitutes necessary conditions in order to estimate, control
and predict the state of the system [3].

The manner in which these are realized is the focus of this paper.

II. REALIZATION

Condition 1 — Hierarchy of Subsystems: Organizations and control
are often partitioned and organized into a hierarchy. While it is
difficult to prove necessity of such an organizing structure, it is also
difficult to imagine sufficiency without one. Within VCS there
exist the following principle components, all or part of which may
comprise a subsystem (which may be nested):

a.  state machines, comprised of states and transitions
b. resource objects, which are computational components

c. signals, which are data elements that are used in data flow
diagrams with the resource objects

Examples are shown in Figures 1 and 2.

Condition 2 - Periodicity of Subsystem Execution: There is a strict
sequence of execution combined with an overall time constraint of
(nominally) 50 msec, or else an integer multiple of 50 msec of
time, during which each subsystem must execute in order to ensure
that the control is deterministic under all conditions. In order to
ensure that this is the case, we have developed a scheduling
function that ensures that this occurs and also ensures that
execution duration of each subsystem is rigidly controlled to tight
tolerances.  Should an exception occur, sophisticated cycle
skipping measures are implemented in order to ensure
uninterrupted control and observability of the system. The
hierarchy is illustrated in Figure 3.

Condition 3 — Replay of the State of the Entire system: Given that
the system is comprised of a hierarchy of subsystems, which
constitutes the state of the system, and given that these subsystems
are comprised of states and signal values, replay constitutes the
ability to record and reconstruct the causal nature
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of the physical system (implanter) under control. This condition is
an assertion of the sufficiency of Condition 1 and 2 for maintaining
controllability and observability and requires limited additional
effort. The interfaces to the data are shown in Figures 4, 5,
and 6.

Condition 4 — Conditions 1 — 3 are met with a compiler that we call
“Vizard” and by defining drawings and interfaces with levels of
abstraction that are convenient for reuse. The user interface
functionality is achieved by “interpreting” what is contained within
the hierarchy of subsystems through links that are called
connectors. The set of connectors provides the interface to the set
of states and signals that are not necessarily hierarchy dependent.
This is done in a manner that allows the user interface to “react” in
a manner that is consistent with the device under control, which in
this case is an implanter. The input to the Vizard is a set of control
drawings as well as data that describe the particular configuration
of the implanter to be controlled.

I1I. FAULT TOLERANCE

Perhaps the most important aspect of a complex control system,
assuming it works at all, is how it works in the event of an
exception or an abnormal condition. In this regard, the combined

set of capabilities for VCS are the distinguishing characteristics that
provide for reliable control under any circumstances. To see this,
we can compare it to other approaches to control.

Event Driven Systems (virtually all other systems in the
semiconductor industry) — Often control systems are designed to
operate in response to pre-given events, which constitute the state
of the system. The problem for digital computer based control,
typically, is the fact that as the permutations and combinations of
all possible events become intertwined with all possible physical
occurrences for the system under control, the response of the is not
deterministic. An undesirable side effect of this is the fact that the
state of the system is no longer controllable and observable, at least
to the same criterion that existed before the occurrence of the
exception. This is the key problem with event driven systems. The
key advantage is that they are simpler to implement, especially as
compared to implementing a large-scale deterministic control
system.

In a manner of speaking Conditions 1 —4 give rise to the possibility
of implementing a maintainable and reliable control system that
functions under the full range of operational scenarios that we
encounter in production environments.

IV. ADVANTAGES OF CONDITIONS 1 -4

Advantage of Condition 1 — Fault isolation is rapid and
simple. The hierarchy of subsystems creates a linked list
that “points” directly to the problem subsystem by virtue of
a path name that identifies the subsystem in error as well as
the parents of the errant subsystem from the level of the
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error to the highest level in the system. You can imagine a
tree diagram with a branch that turns red under error
conditions. This highlights error conditions for the operator.

Advantage of Condition 2 Observability and
controllability are maintained even under fault conditions.
In addition, determinacy makes it easy to optimize
performance of the state machines which correspond to
physical system performance such as wafer motions and
beam tuning. Once a state machine resource object
combination is implemented and the associated physical
events to be controlled are piecewise approximately
deterministic, then the entire sequence of operations can be
optimized in order to avoid any dead time, which translates
into higher throughput. Our VCS based control of exact
same hardware components, compared with conventional
control system design, is about 30% faster due to the ability
to reliably optimize performance of the associated sequence
of events to be controlled.

Advantage of Condition 3 — Observability of the system is
transferable electronically, independent of the actual time of

recording. Analysis of intermittent conditions associated
with the hardware/software interface of the implanter are no
longer a problem. If there is an intermittent event (or
problem) it is recorded and can be reviewed on site or sent
back to the factory for explanation. Therefore, unusual
interaction between the hardware and software can usually
be identified and explained within 10 minutes of receipt of
the associated archive file. Historically  such
characterizations, especially for intermittent problems, could
take weeks or months.

Advantage of Condition 4 — Development of new systems
and products is rapid. With the compiler and the built in
levels of abstraction, we can re-use existing control
drawings, assuming they are applicable to new hardware
components, or else we can generate new ones. Time to
market is significantly improved, which allows taking
advantage of new algorithms and other market driven needs
as rapidly as possible. Currently, implanter hardware
development is typically gating software development due to
the reusability of software components within the VCS
architecture.
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