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ABSTRACT - The Lienard (Rayleigh) equation for a 
self-oscillator with a number of limit cycles at small 
values of the dissipative parameter, p > 0 ,  is 
considered for all values of p E (0,m). It is shown that 
essential qualitative changes in the structure of the 
phase plane can occur at intermediate values of p, "on 
the way up" from quasilinear to relaxational regimes of 
oscillations. The illustration of such events along with 
classification of topologically conjugate equivalence 
classes of dynamical systems, and some numerical 
examples, are given. 

1. Introduction. There are certain peculiarities 
regarding the operation of devices dependent on 
components with complicated nonlinear (current- 
voltage) characteristics; the performance of these 
devices "often ended in failure due to jumps ..... 
oscillations and other exotic phenomena" [ 11. On the 
other hand, modern solid state concepts [6], nonlinear 
circuitry, and certain areas of biochemical kinetics [3] 
give rise to the instruments and models [8] in which 
more than one stationary or periodical regime is 
possible. Obviously, the existence of multiple 
stationary states in electrophysical problems described 
in [8, 6 and references] in terms of spatial variables can 
lead to the above mentioned types of characteristics in 
the current-voltage domain. The purpose of this paper 
is to illustrate some concrete details of the relevant 
dynamics in the simple case of a self-oscillator 
governed by the Lienard equation: 

U + pf (u )u  +U = o .  (1) 

Although the value of p affects the nonlinear term, in 
the applied context (and accordingly, in the equations 
for dimensional variables), only parameters pertinent to 
linear components of the oscillator are vaned, while the 
nonlinearity itself is invariable. 

When the self-oscillator of ( I )  is a circuit, an invariant 
which reflects the physical properties of the nonlinear 
element is the "characteristic" 
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U 

H(u) = f(s) ds . ( 2 )  
0 

Details on the synthesis of pregiven characteristics and 
the role they play in oscillators can be found in [2], and 
a companion paper [ 131. When the above mentioned 
parameters vary over a broad range (which is often 
unavoidable), reducing the problem to "small" or 
"large" values of p can lead to inadequate conclusions 
and practical mistakes. There are several works on 
multiple limit cycles for the Lienard equation (see [9], 
[ 1 I])  however, none of them addresses the problem 
with parameter, p. 

The novelty of the information delivered by this paper 
consists in bridging the gap between two fundamental 
methods used in nonlinear circuit theory and practice. 
These methods, which are asymptotic by their nature, 
inevitably demand a "small" nonlinearity (quasilinear 
theory of nonlinear oscillations), or else, nonlinear 
term5 dominate the equations (theory of relaxation 
oscillations). 

From a qualitative point of view, no significant 
phenomena take place when p in the equation (1) runs 
over (O,-), provided that f(*) satisfies the conditions 
of the Levinson-Smith Theorem [12]. The "only" 
thing that happens is a strong "contortion" of a single 
limit cycle and an elongation of its period for large p. 
Hence, under the above condition on f(*), Equation 
(1) generates dynamical systems which are 
topologically conjugate for all values of p E (0,m). 
This latter fact, is not in general valid for a broader 
class of nonlinearities 

After standard transformations, (1) can be written in an 
equivalent form for integral curves: 

where H is defined in (2 ) .  
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All the limit cycles of (l), at "sufficiently small" values 
of p > 0, exist in the neighborhoods of bifurcating 
circles, whose radii are given by 

2x 
l l (R):= f [R cos t ]  sin 2 t d t  = 0 

0 
(4) 

On the other hand, all limit cycles of (l), existing for 
"sufficiently large" values of p > 0, have their limiting 
locations (on the phase plane for equation (3) ) with p 
+ 00 given by discontinuous solutions of the 
degenerate system: 

As is well known, phase trajectories corresponding to 
discontinuous periodic solutions ("relaxational 
curves") of (5)  coincide with certain arcs on the graph 
of the function H and their simple geometric 
construction does not involve solving of any 
differential equations [ 101. 

A natural question is, "Do the limit cycles in the 
neighborhoods of the curves associated with (4) and 
( 5 )  represent integral curves of topologically conjugate 
dynamical systems?" If the answer is negative, the 
next questions to ask would be, "How large, is the set, 
V, of different equivalence classes of dynamical 
systems generated by (1); what are the limit cycles of 
each of them; and, what is the mapping: 

p E (0, -) -+ v ?" 

The answers to these questions can be induced 
immediately from the basic facts of structural stability 
theory for equations with special H. 

A circuit-wise interpretation of these phenomena is 
partially consistent with the concept of "jump 
phenomena," with a major difference. In particular, 
the jumps from one equilibrium to another are 
completely controllable and predictable. 

Hereafter, the function H is assumed to be odd (H(x) = 
-H(-x)), continuously differentiable, H(x) + + 00 
when x -+ 00, and such that any of its positive roots is 
of odd multiplicity. It is also assumed that the number 
of roots is finite and if rk E S (k = 0,1,2, ..., n) with ro 
= 0 < r l  < r2 <....< r, where S = ( rk ) is the set of 
all positive roots, then dH(x)/dx has only one root on 
the interval Ik = (rk , rk+l  ) ( k = 0,1,2 ,..., n-1). 
Equation (1) with such a function H determines a 

dissipative dynamical system for each p > 0 [4, Ch. 1, 
sec. 4.1. 

2. Conjugacy. A heuristic guess about plausible 
equivalence classes of topologically conjugate 
dynamical systems is helpful. Such classes are 
traditionally exemplified with explicitly defined limit 
cycles, in order to observe the qualitative evolution of 
phase portraits due to variations in the parameter's 
value. Bearing in mind the criteria for topological 
equivalence of dynamical systems [5] ,  consider the 
following equation: 

x + x [ ( x 2  + x 2  - a 2 2 ) 2  + I - ~ I *  
.. . 

[x2 + x2 - a12 - (p + 1) ln  1 

where la1 I > I a21 a n d p > O  

+ x = 0 (6) 

The family of periodical solutions to (6): 

x = (a12 + (p+ 1)1/2 11" sin t 

does not bifurcate, and for p < 1 there is only one 
limit cycle admitted by Equation (6 ) .  In the 
neighborhood of p = 1, two new periodic families 

x = (a22  + (p - 1>1n sin t 

and 

x = (a22  - (p - 1)1n sin t 

appear. Hence, for each p > 1, there are three 
hyperbolic limit cycles and therefore (6) is a member of 
the same equivalence class of dynamical systems, with 
parameter, as the system represented by Figure l a  and 
1 b below. Analogously, the equation 

x + x [ ( x 2  + x 2  - a 2  12 + l - p l  + X = O  

is conjugate to the other dynamical system represented 
by Figure l e  and If .  Resorting to such images 
noticeably reduces the time and efforts needed to plan 
and interpret .computational work (at least it was the 
case with the authors). 

.. . 
(7) 

3. Examples. In Figure 1 special types of 
dynamical systems are demonstrated through their 
qualitative portraits without axes scales and labels. 
Functions Hj are shown only in graphical form and 
exclusively to emphasize the essential qualitative 
differences between them. Below will be given explicit 
realizations of Hj providing phase portraits for "small" 
and "large" p as they are pictured on Figure 1. 

736 



Functions Hj are determined as the following: [5] Peixoto, M. M., "Structural Stability on Two- 
dimensional Manifolds," Topology 1, 101-120, 
1962. 

[6] M. S. Mock. An example of nonuniqueness of 
stationery solutions in semiconductor device models, 
COMPEL-International Journal for Computations and 
Mathematics in Electric and Electronics Engineering, 1 

[7] T. Matsumoto, L. 0. Chua, and R. Tokunaga, 
"Chaos via Torus Breakdown," IEEE Transactions on 
Circuits and Systems, Vol. CAS-34, pp. 240-253, 
1987. 

Hj (XI = c Ajk e x p ( ( X - M j k  I2 / 02jk 
k 

+ x 3  
for j = (1,2) 

Hj(X) = 1 ' c j k  Xk 'denotes sum over odd pp. 165-174, 1982. 
k integers 

for 6 = 3 , 4  ) 

k =  7 5 3 1 

j = 4  

c j k  0.582052 -2.429340 2.914700 -0.985997 

Table 1 

Note: In Figure 1, when j = 1, then k = 4; when j = 2, 
then k = 6; when j = 3,4, then k = 7. For concreteness, 
a numerical simulation of the phase portrait for (3) with 
H4 is provided in Figure 2. 

4. Concluding r e m a r k s .  The characteristics 
considered in the paper are by no means exotic objects 
with special properties. In many respects they have 
been met before in experimental work of the present 
and other authors [2, 71. In the above considered 
examples, self-oscillatory regimes compose one or two 
conjugate classes. 
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Figure 1. The qualitative types of phase portraits. All 
equilibria and limit cycles are of the hyperbolic type. 
The symbols UE, SE, SLC, and ULC indicate 
unstable equilibrium, stable equilibrium, stable limit 
cycle, and unstable limit cycle, respectively. The cases 
a, c, e, and g correspond to "small" p in (3) for H I ,  
H2,  & ,  and H3 , respectively. The cases b, d, f, 
and h correspond to "large" p in (3) for H2 , H4 , H1 
and H3 respectively. 

Figure 2. Numerical phase portraits, dx/dt vs x, for 
(3) with the characteristic H4 of Table 1. a) at p = 
0.01, b) at bifurcational value of p = 0.422 c) at p 
= 2.0, d) characteristic H4(x) vs x with indicated 
relaxational curves. 

737 



a !  

uL#: U 

b! 

Figure 1 

ULC 2.00 

-2.0 /+; 
"E -2.00 

-2.0 

UE 'j -2.00 SE 

Figure 2 

738 


