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ABSTRACT: The design of components with a pregiven nonlinear current—voltage charac-
teristic is presented. On this basis, hardware realization of self-oscillators capable of
functioning in different periodical regimes, without change of internal parameters, is described
along with analysis of these new types of oscillators. A new aspect of connections between
quasilinear and relaxational oscillations is considered with concrete examples.

I. Introduction

In Ref. (1) (p. 94) there is a discussion of devices with a certain nonlinear “input-
output” relationship. One reads “. . . I want a nonlinear apparatus with that kind
of characteristic. There are various ways of getting it, but the general principle
involves using a push-pull.” As we now know, no broad classes of nonlinearities
have ever been synthesized by means of the technique suggested in (1). Ten years
later, one finds in Ref. (2) an ample source of exercises on nonlinear circuits, often
with formal nonlinear components of abstract, unclarified physical nature and
rather complex characteristics. In a decade after, many new approaches were
again discussed [see, for example (3)], aiming at the same purpose of constructing
nonlinear devices with pregiven characteristics. Apparently, until recently, non-
linear components with the firm, requisite control over their characteristics did not
exist as real hardware.

Throughout this paper, our interest is limited to the synthesis of nonlinearities
for the purpose of constructing oscillators of simple topological structure and with
a set of stable limit cycles. Oscillators of this type, working in a harmonical regime,
have previously been described in (4) and proposed for some adaptive control
applications in (5). In these devices, some limitations existed due to the use of
multipliers having insufficient dynamic range. Presently, we describe oscillators
that can work in a broad spectrum of different regimes, without multipliers.

There is an increasing interest for multiple steady-state electronic circuits. Some
of the already existing developments will be specifically indicated below.

I1. Synthesis of Nonlinearities
In linear circuits, avoidance of the inherent nonlinearities of semiconductor

devices is achieved by limiting device operation to within the constitutive charac-
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teristics. For virtually any semiconductor device, however, if we do not choose the
operating range appropriately, nonlinear regimes will be observed. Our purpose is
to show how steadily reproducible characteristics can be used for reccmng non-
linear one-ports with desirable and controllable properties.

We are interested in realizing nonlinearities with specific I-V characterlstlcs in
order to achieve predetermined operative functions. Since systematic and strictly
justifiable procedures for synthesis of general nonlinearities do not exist, we shall
expound the methodology used on a few concrete examples which will be of further .
interest in this paper.

Obviously, one is unlikely to find a smgle semiconductor one-port with an -V
characteristic as indicated in Fig. 1, and we develop a nonlinearity, like this,
by combining multiple one-ports with “simpler” nonlinearities. The identifiable
portions of the entire network, which have more simple /-V characteristics, are
termed ‘“‘sub-elements”. Their topology and components are indicated in the
schematics (see Figs. 2 and 4). The I~V characteristic of a sub-element is termed a
“sub-characteristic”’.
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FiG. 1. (a) Piecewise linear I~V nonlinear characteristic; (b) nonlinear I~V characteristic
with indicated relaxation oscillation.
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F1G. 2. Schematic for characteristic of Fig. 1a.
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Fi16. 3. Schematic for the nonlinear one-port component of Fig. 4.

In order to synthesize hardware with a more sophisticated nonlinearity, we divide
the graph of the desired nonlinearity into several portions, and then choose a sub-
characteristic (sub-element) to coincide with each portion. Choosing suitable sub-
characteristics is the subject of extensive trials and numerical simulations. A sub-
element is itself a one-port device, and with suitably chosen sub-characteristics, the
parallel connection of all sub-element results in an approximation to the desired
characteristic as a whole.
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FiG. 4. Nonlinear one-port device used in circuit of Fig. 6 to produce desired multiple
relaxation and quasiharmonic oscillations.
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We briefly indicate the performance of the described stages in an attempt to
synthesize the nonlinearity shown in Fig. 1a. To begin with, we choose the circuit
of Fig. 2, which is a combination of similar sub-elements with different values of
participating parameters. We now select a certain set of concrete values of these
parameters as a ““zero step” in a sequence of iterations (which follows). Note that
the characteristic of this circuit, Fig. 2, depends on the values of the resistors of
each sub-element. In their turn (if this characteristic is assumed to approximate
the characteristic of Fig. 1a), the relationships between the values of the resistors .
are predetermined by the values of the negative slopes, sy, of the particular portion
of the desirable piecewise linear characteristic of Fig. 1a. Hence,

R .

=%, 11%3 (for By), )
and the s;s and v,s are determined analogously for the sub-characteristic of the
B, and B, sub-elements, respectively. The purpose of the subscripts g and d is to
indicate which hardware sub-element corresponds to a particular portion of the
characteristic with g(d) denoting the part of the characteristic in the left (right)
half plane. Now, the nonlinearity of Fig. la, or a similar one, can be achieved by
an iterative procedure with regard to the values of the s,s and the v,s. Note that
the voltage sources, vy, provide for translation of the I~V characteristic in the
plane. ,

The characteristic realized and tested in Ref. (6, Fig. 11) (which was not received
for a specific reason, but happens to serve as a useful example) is of interest as
concrete evidence of practical possibilities for creating nonlinearity.

Having established, in principle, one method of synthesis, we will indicate alter-
native design procedures. In Refs. (7-9), numerous elementary negative resistance
devices, which can be used as elementary ““bricks” for building a broad class of
one ports, are described. ‘

We concentrate now on the construction of a broader class of nonlinearities,
different from the piecewise linear class already described. As an example, consider
the characteristic in Fig. 5. Choosing the sub-element of Fig. 3 with concrete
voltage (polarity and magnitude), we develop the circuit of Fig. 4. After several
approximations, the I~V characteristic of Fig. 5 is reached by means of the com-
puter program SPICE, in the same manner as was described for piecewise linear
synthesis. Unfortunately, there are difficulties in comparing the -V characteristic
determined by SPICE with the actual device characteristic, for a circuit of this
complexity. This problem was previously noticed and partly alleviated in (6).

Remark on possible applications :

In automatic control systems, the usual sources of nonlinearities are concentrated
in the servomechanisms and sensory devices. So great, so significant was the impact
of the lack of information regarding these technical components that it led to an
excessively broad formulation of the problem of global stability and a dependence
on exceedingly general classes of admissible nonlinearities [(10), Chap. 1]. Complete
control over even a part of the nonlinearities in the system allows for a better
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FIG. 5. I-V characteristic resulting from one-port of Fig. 4, determined with SPICE, for a
particular choice of Rs and Vs, in order to produce two quasiharmonic oscillations and
one relaxational oscillation. Expected relaxation oscillation is indicated.

perception of dynamical peculiarities and a s1mp11ﬁed design. One example of such
an approach is given in (5).

II1. On Self-oscillators and Applications

In Fig. 6, we show the principal circuit for the self-oscillator under discussion.
If H(v) is an I-V characteristic of a voltage controlled nonlinear one-port device,
the governing equation for the circuit is:

d% . d[H@] ,

where ¢ (sec) = wt and w? = 1/(LC). In this model, we have included the internal
resistive losses of the inductor and capacitor in the middle term of Eq. (2). For this
Lienard type equation there exist two different constructive asymptotic theories
allowing for the determination of all periodical solutions of (2). Recently, new and
general results, unrelated to asymptotic methods, on the existence of N limit cycles
of (2) were presented in (11). References (11) and (12) are the only sufficiently broad
investigations known to the authors. With regard to our purpose, the following
comments are appropriate. The results of the above works allow one to construct
a nonlinearity with a number of limit cycles; however, since the methods and
results of these works are predominantly of a qualitative nature, they provide little
information about the character of the periodical solutions themselves. '

For these reasons, we resort to asymptotic theories. In the Lienard equation with
parameter u:

: d*v d _

ds? +,ud Hw)+v=0 (3
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we assume H(v) is an odd function. By means of the substitution s = yut and

u(e) = L "x()de

one receives

_ eli+Hu)+u=0 (@)
where
g L
=
Letting du/dt = — y, we come to the equivalent ‘system:
e ) | ©)

We emphasize that in system (5), function H describes the same voltage-controlled
nonlinear characteristic as in the oscillator of Fig. 6. Thus, having a given nonlinear
characteristic the search for periodical solutions in the framework of asymptotic
theory of relaxational oscillations can be done only on the basis of the characteristic
itself, without resorting to the system of differential equations [(13), Chap. 3].
The construction of these periodical solutions is well known and mathematically
justified (13, 14). Therefore, we only indicate a set of limit cycles on the phase plane
with a given characteristic, see Figs. 5, 8 and 1b. The periods of these limit cycles
are representable by an asymptotic expression, with respect to ¢ in (5), and are
given in (13).

Utilizing the characteristic of Fig. 8 in the circuit of Fig. 6, one notices that the
relaxation oscillator with such a nonlinearity should admit two stable limit cycles
separated by an unstable one [a detail missing in the monograph (15) fig. 76] and
an unstable equilibrium at the origin.

Remark

To justify the indicated construction of the limit cycles, choose a sufficiently
large £ > 0 in (5), then due to (13) (Theorem 12), there will be two stable limit
cycles of the system (5) lying in the neighborhood of the two indicated *‘relaxational
limit cycles”. Due to the Bendixson—Poincare theorem these limit cycles should be
separated by another unstable limit cycle. Using the transition, & — 0. and

Lé S -

FiG. 6. Multi-state oscillator circuit.
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Fig. 7. SPICE simulation outputs for oscillator of Fig. 6 [Eq. (3)], with characteristic of
Fig. 5: (a) quasiharmonic oscillations for large C (sufficiently small p), (b) relaxation

oscillation for small C (sufficiently large p).
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F1G. 8. I-V characteristic ’resulting from one-port of Fig. 4, determined with SPICE, for a
particular choice of Rs and Vs, in order to produce two stable relaxational oscillations.
Expected stable limit cycles, and the unstable cycle in between, are indicated.

considering the oscillator
gii—H()+u =0 (instead of eri+ H(u)+u = 0)

for which the intermediate cycle is stable, allows one to find the limiting location .
of this limit cycle, as shown in Figs. 1b, 5 and 8.

The realization of the oscillators based on the described nonlinearities has not
met with any significant difficulties, particularly in the case of one relaxational
limit cycle. Therefore, the ensuing considerations are devoted to more refined
phenomena, discovered in multiple cycle oscillators. Between two great asymptotic
theories, quasilinear and relaxational, lies a “no-man’s land” of intermediate values
of win (3).

Consider the characteristic H such that the oscillator of (3) has two stable limit
cycles of quasilinear nature [for sufficiently small 4 in (3)]. Such a characteristic is
indicated in Fig. 5. We are certain to have two stable quasiharmonic oscillations
(with approximate amplitudes of 5 and 13 V), based on the theoretical con-
siderations outlined in (4, 5, 13 and 16). Note that by increasing C, we decrease u
for the oscillator of (3). For sufficiently small y, to insure operation in the quasi-
harmonic regime, the results of a SPICE simulation reveal the two stable oscillations
shown in Fig. 7a, for the characteristic of Fig. 5. As the value of C is decreased (u
increased), the oscillations become more “relaxational” as indicated in Fig. 7b.
These results were confirmed experimentally with hardware.

For sufficiently large u, according to the characteristic in question, oscillator (3)
admits only one stable relaxational periodic solution [see (3), Theorem 12]. Hence,
in proceeding from small p in (3) to large values of u, the oscillator undergoes a
qualitative change in the structure of the phase plane. There exists the value of
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p = u* when all three periodical solutions, which existed for smaller values of p,
are replaced by a stable single limit cycle.

The authors are not able to provide a detailed picture of the changes in the
dynamical behavior and structure of the phase space for the oscillator prior to
reaching the value of u = u*, nor are they aware of the existence of such an
investigation in the literature. The approximate estimate of u* however, can be
done on the basis of the numerical technique developed by the authors and not
discussed here. ‘

As a final example, the characteristic of Fig. 5 is modified, as shown in Fig. 8.
Clearly, two relaxational oscillations are expected for sufficiently large u. The
results of a SPICE simulation are shown in Fig. 9. The oscilloscope tracings of Fig.
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Fi1G. 9. SPICE simulation outputs for oscillator of Fig. 6 [Eq. (3)], with characteristic of
Fig. 8: (a) small amplitude relaxation oscillation, (b) large amplitude relaxation oscillation.

Vol. 322, No. 4, pp. 241-252, October 1986
Printed in Great Britain 249



Y. A. Saet and G. L. Viviani

Fig. 10. Oscillator as described in Fig. 9. Oscilloscope settings are 5 V/division and
1 us/division: (a) small amplitude relaxation oscillation; (b) large amplitude relaxation
oscillation.

10 were produced by a hardware realization of the proposed circuit. Discrepancies
are due primarily to our inability to control the device characteristics of the JFET.
Such control, however, is completely within reach, at the manufacturing level.
Qualitative agreement, however, is excellent! '

It is interesting to note that in our experiments with these oscillators, a decrease
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in C [in (5) ¢ = C/L] causes an increase in the observed period, contrary to a
situation with quasilinear oscillations and in complete agreement with relaxation
theory [(13), Formula 8.7, Chap. 3]. The period, for sufficiently small ¢, is (asymp-
totically) growing linearly in .

Remarks on motivations and applications
Physical investigations of phase transitions in macroscopic molecular or bio-
logical systems lead to dynamic models which are hardly tractable analytically.
~ Essential components of these models are nonlinear oscillators with a set of station-
ary states, equilibria or periodical motions. Seemingly, the probable means of
analysis of the above systems is a numerical computational approach. However,
digital computers become over-burdened as required throughput reaches the level
necessary for these numerical experiments. As a remedy, a current tendency is to
mimic dynamical phenomena with nonlinear electronic devices. For a description
of such a simulation, in noise induced phase transitions, we refer to (17). So far,
similar work on auto-oscillatory systems has stagnated due to the absence of multi-
limit cycle oscillators. For theoretical analysis of such models, we refer to (18).
Another source of oscillators with multiple limit cycles orginates in the area of
biochemical kinetics and models of self-organization in biology (19, 20).

1V. Conclusion

This work has shown the possibility of the realization of complicated nonlinear
characteristics. While there are no systematic algorithms for performing this task,
certain patterns of characteristics were nevertheless built and verified in detail on
oscillators having a predictable set of limit cycles. Some applications illustrating
the theory have been given.
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