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Abstract—Oscillators, of the Lienard type, with an arbitrary predetermined (in number
and locations) family of limit cycles are synthesized using the polynomial of the least
possible degree as a nonlinear dissipative characteristic. Some new facts regarding the
interplay between the set of the generating amplitudes (in the sense of quasi-linear
theory) and the zeros of the nonlinear characteristic are established. On this ground a
simple procedure for a concrete hardware realization of the oscillators is described.
Part of the results is based on intensive numerical experiments.

1. INTRODUCTION

In recent years, in different areas of applied sciences, there have appeared models of
physical or biochemical processes based on the existence of several limit cycles. In [1],
two coexisting limit cycles in the phase plane correspond to different types of dynamics
of cell multiplication. In [2] the authors give an example from chemical kinetics leading
to a system with several limit cycles. Models of a similar mathematical nature for the
description of active optical media, and models from other areas of applied physics, can
be found in the works of [3-5]. Our motivation stems from the fact that while concrete
devices with a single limit cycle are well known and widely described, those with multiple
stable limit cycles are almost unmentioned in the literature. Perhaps such systems have
never been practically synthesized, though the narrow class of Lienard oscillators with
two limit cycles was discussed as a physical model of a system with metastable
properties[6].

The goal of the present work is to show how to build an oscillator obeying a Lienard-
type equation with a pregiven set of limit cycles; each of a specified amplitude. Simul-
taneously, the prescribed synthesis is optimal in the sense that it requires, as a nonlinear
characteristic, a polynomial of the lowest possible degree. A broad investigation of Lien-
ard-type oscillators with N limit cycles was given recently in [7, 8]. The mathematical
ground taken in this paper, on the contrary, is restricted only to the bifurcational theory
of quasi-linear systems. This type of oscillator is chosen because it is a classical topic of
nonlinear oscillation theory, and because such a choice simplifies hardware realization.
Needless to say, this class of oscillators is not a universally valid model for all the cir-
cumstances found in the above references.

A prospective goal, which is ultimately more interesting and important, is to obtain a
picture of the interaction of many coupled oscillators; each having a set of stable limit
cycles. Digital computers are likely to be incapable of adequately addressing this problem
because of their inherent inefficiencies for investigation of global behavior of multidi-
mensional systems of differential equations. Therefore the proposed electronic models
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can be useful in order to gain at least a qualitative understanding of the dynamical events
by experimental investigations. The authors also feel that there are situations where con-
sideration of models based on systems of limit cycles, instead of a single one, is natural
and “‘ideologically’’ worthwhile. As an example of such problems in physiology, see the
discussion in [9] and references therein.

2. SYSTEMS UNDER CONSIDERATION

The celebrated Van der Pol equation, allowing for one globally stable limit cycle, is
widely employed as a modeling basis for numerous self-oscillating systems of quite dif-
ferent physical nature. As a natural generalization and extension of the Van der Pol equa-
tion to a class of systems leading to several limit cycles, we shall consider the following
Lienard equation:

&x

dx
dt2+p,W(x)-d—’+x=0, ¢))

where W(x) is a real analytical function and p > 0is a small parameter. If (1) is considered
as a quasi-linear oscillator, its limit cycles should be located in the phase plane in the
neighborhood of certain circles of the unperturbed linear system [ = 0, in (1)]. In order
to receive more concrete results, in the following analysis W(x) will be taken as a poly-
nomial. Since the arbitrarily chosen polynomial, W(x), will not necessarily result in the
appearance of a specific number of periodical solutions to (1), the problem at hand is the
determination of a suitable polynomial, W(x), which results in the appearance of N limit
cycles bifurcating from the circles,

x® + ¥* = R}, k=1,2,3,...,N, )

R] >R2> N >RN>0

The circles, (2), are considered as corresponding to the periodical solutions of the un-

perturbed linear oscillator. Hence each limit cycle ought to be located in the neighborhood
of a prescribed circle in the phase plane. (The subsequent terminology follows[10].)

Lemma 1

There exists an even polynomial, W(x), of exactly degree 2N, such that (1) allows
exactly N limit cycles bifurcating from a given set of circles (2).

Proof. Determine the polynomial B(R) as
N
B(R) = [] (R* - R}) =R + ban_2R™N-2 4 o 4 .
k=1

We are looking for the polynomial,
Wx) = aZNxZN + azN_2x2N—2 + e+ azsz'i + - + ap, 3)

such that

2

W(R cos ¢) sin? ¢ dp = B(R). 4
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With the notation,

Fe/2
bu = [ Cco*O)si0dd  (k=0,1,....N) ®)

we come to

b . =

ay. = —, byny=1 (k—O,l,...,N).

OS2k
Q.E.D.
Remark 1

In lemma 1, only even polynomials are considered since if W(x) had contained odd
degrees they would not effect the radius of the circles from which the limit cycles originate.
This statement follows from the fact that in the general case the bifurcating equation is
(see [10], Chap. 14)

27

W(R cos(8)sin?0de =0 (k=0,1,...,N). 6)

The following conjecture is based on numerous numerical experiments which will be
discussed further. Conditionally, we shall call this conjecture ‘‘lemma 2.”’

Lemma 2

Let W(x) be an even polynomial such that (1) has N simple limit cycles; each bifurcating
from an appropriate cycle of the set (2). Then on each interval [0, R,], there exist at least

N+1-kytk=1,2,...,N)simple roots of W(x). Each limit cycle with odd number
is stable.

Proof. [Lemma 2 (N = 2)]

By virtue of the Bendixson criterion for existence of a limit cycle, it is necessary to
have a sign change of the divergence of the vector field of the corresponding system for
Eq. (1). Therefore W(x) changes sign at least once, but then W(x) should have one more
real (second) root since W(x) is a polynomial of second degree with respect to x2. Both
simple roots, p and p> (p; > p.), belong to [0, R,] due to the fact that W(x) > 0 for all
sufficiently large x and due to the structure of Eq. (4). Since the roots of the bifurcational
equation are simple, the “‘external’’ limit cycle is attractive by virtue of the standard
theory of bifurcations in quasi-linear systems[10}. Q.E.D.

Remark 2

As is shown below, the separation of the roots of B(R) and W(R) does not necessarily
take place for an arbitrary set of roots {R,}. On the other hand, it should be noticed that
the very existence of N positive simple roots of W(x), by itself, does not lead automatically
to the appearance of N limit cycles. (See a concrete example in Section 4.)
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3. DISCUSSION OF THE CONJECTURED “‘LEMMA 2’* AND SOME
PECULIARITIES IN DISTRIBUTION OF SIGN CHANGES OF THE
NONLINEARITY

Numerous intensive numerical experiments have been completed to reveal the distri-
bution of roots of the polynomial W(x) generated by the set of given amplitudes {R;}. No
contradictions to the statement of lemma 2 have been found. Moreover, in the course of
these experiments, the following observation is made. For sufficiently separated neigh-
boring limit cycles (in terms of amplitudes R; and R;. 1), there is one root of W(x) in the
interval [R;, R;.1). A quantitative estimate for the term *‘sufficiently separated’’ can be
observed from the Table 1, for N = 5.

On the other hand, one particularly interesting phenomenon is noticed when bifurcating
amplitudes are sufficiently close. In the case of the Van der Pol equation, where W(x) =
x* — 1, the interval [—1, 1] of “‘negative resistance,”” gives rise to the only bifurcating
limit cycle in the neighborhood of a circle of radius R, = 2, while Wi(x) is positive (positive
resistance) on the interval [1, ). Therefore, intuitively the concept that if I = [pk, ps+1]
[see (7)] such that W(x) < 0, x € I and W(pi) = W(pk+1) = 0, then adjacent interval of
*‘positive resistance’’ [ px+1, px+2] can have only one value R* for the radius of the circle
from which the limit cycle bifurcates, seems plausible. However, this is not the case for
an oscillator with many limit cycles as demonstrated in Table 2; here, an example when
one interval of negative dissipation is ‘‘followed” by several values of generating ampli-
tudes without a sign change of W(x).

Remark 3
Consider two sets of generating amplitudes {R,, . .., Ry} and {Ro, R:, . . ., R},
where Ro> R,. Let Q = {q1,...,q.}and P = {po, pi,. .. , PN} be two corresponding

sets of zeros (in decreasing order) for W(x) = W,(x) and W(x) = Wa(x), where W,(x) and
Wa(x) are polynomials (described above) of degrees 2N and 2N + 2, respectively. Thus
Eq. (1), with nonlinear characteristic W;(x), has N limit cycles bifurcating from circles
of radii Ry, Rz, ..., Ry and Wy(k) is such that the Lienard equation has limit cycles
bifurcating from the circles Ro, Ry, . . . , Ry. Thorough numerical investigations confirm
the following principle.

With notations introduced, it follows that

pi<qgi ((=1...,N and i=0). )]
Loosely speaking, the values of the *‘previous” N roots of W(x) (for i = 0) are decreasing
as the number of succeeding members in the sequence of limit cycles increases. Table 3

demonstrates this property.
As far as the authors know, the possibility on nonseparation (see remark 2) and the

Table 2. Three successive limit cycles

Table 1. Numerical resuits for N = § without change of sign of W(x), for N
=5
(@ (b} (©
Rj Pj Rj Pj Rj Pj Pk Rk
075 0335 030 0.135 200 0618 1.00 0.3399
1.50 1.056 0.70 0449 225 1.728 2.00 0.9499
225 3357 080 0712 250 2.409 2.07 1.354
300 6960 1.20 1.036 2.75 2.538 2.11 1.443

425 14.66 1.50  1.372  3.00 2.880 3.00 1.644
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Table 3. The root decreasing phenomenon

(a) (b) (©)
R; Py R; Py R; Py

1.0 04392 1.0 04325 1.0 0.4285
1.7  1.271 1.7 1.244 1.7 1.245
2.5 2128 2.5  2.093 25 2075
3.8  3.326 3.8 3.251
49 4453

property expressed by (7) have never been mentioned in the literature on nonlinear
oscillations.

4. COMPUTATIONAL ASPECTS OF AN OSCILLATORY DEVICE, N = 3

The results of Section 2 suggest the choice of W(x) for simulation purposes as an even
polynomial of degree 2N,

W) = axnx®™ + aan-2x™ 72 + - + a3;x¥ + - + ap, ®)
-J

with the coefficients defined by the set of {R;} prescribed amplitudes. It is important to
stress that for purposes of synthesis, the representation of the polynomial, as in (8), might
be inadequatc from a technical point of view. Firstly, small inaccuracies in realization of
coefficients can result in significant deviations from desired amplitudes of limit cycles;
possibly even reducing their number. Secondly, required coefficients in (8) are likely to
exceed the working range (voltage or current) of a particular electronic component(s).
For example, for moderate amplitudes {R:} = {0.5, 1, 1.5, 2, 2.5}, the coefficients ay for
(8) are (1, 0, —10.31, 0, 33.57, 0, —39.2, 0, 13.51, 0, —0.5768) which are not all within
the dynamic range of most solid-state components, since scaling in such a nonlinear net-
work is not possible. In this light, representation of W(x), due to lemma 2, is taken as

N
Wx) = [1 &* - pd). ©)
k=1

Choosing pairwise intermediate multiplications in (9) to minimize the outputs of the mul-
tipliers, one can partly dlleviate the problem of not operating within the dynamic range
of components. According to Section 2, W(x) must have N sign changes in the interval
[0, R,). Therefore the magnitudes of p; do not exceed the value of R;.

A circuit allowing for 2 stable limit cycles (N = 3) was built. Included are block and
schematic diagrams, shown in Figs. 1 and 2. The data for the working parameters of the
circuit are represented in Table 4. The indicated operational amplifiers have an operational
range of +10 V. Resistors and capacitors are of the standard type, while the multipliers
are transconductance integrated circuits withh a total error of +1%.

Table 4. Operative circuit

parameters
Ry P;
2.00 0.747
2.40 1.953

2.80 2.574




382 Y. A. Saer ANI'J G. L. Viviani

/ /

Win & Je—

Fig. 1. Block diagram for circuit.
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Fig. 2. Schematic diagram for circuit.

For consistency with quasi-linear theory, u = 0.1 is chosen. The time constant for the
integrating portions of the circuit is chosen as 0.001 sec. No further scaling is necessary.
The oscilloscope tracing of the outputs x(¢) and x(¢) is shown in Fig. 3. Amplitudes of the
limit cycles in Fig. 3 turn out to be 2.11 and 2.69 V. These results agree favorably (within
5.5%) with the theoretical values of 2.0 and 2.8, as seen in Table 4.

Figure 4 demonstrates a photograph of another oscillator excited with white noise.
White-noise excitation, in this example, is only a technical means for revealing existence
of multiple limit cycles in a single exposure and is shown for illustration.

As a conclusion, the synthesized systems presented are optimal in the sense that the
number of sign changes of the nonlinearity, W(x), gives rise to the same number of pe-
riodical regimes. The arbitrarily chosen W(x) with N simple roots does not result in N
limit cycles. For instance, in the case of N = 3, the values p; = 1, p, = 2 and p3 = 3,
as the roots of polynomial (8), do not lead to the existence of three limit cycles.
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Fig. 3. Multiple exposure photograph for stable oscillations at X 1of Fig. 2, for N = 3. Ey, E; and E; are specified
from Table 4, as p}, p} and p3, respectively. Oscilloscope scale is 1 V/division.

Fig. 4. Single-exposure photograph of white-noise excited oscillator with three stable limit cycles.
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