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ABSTRACT

The need to create useful information from full motion video gath-

ered by drones is a significant motivation for devising methods to ap-

proximate human cognitive behaviors. Additionally, the regulatory

needs associated with drone systems has spawned the requirement

to be able to confirm, or audit, the activities of such devices. A con-

ditional approach, as compared with a generalized video processing

environment, is presented that associates practical and realistic con-

straints to simplify the problem of finding useful information from

video acquired by a drone into something that is tractable and con-

sistent with real-world requirements. A primary contribution of this

paper is to introduce the concept of continuous cognition from a the-

oretical perspective, followed by a practical application derived from

an operational system.

Index Terms— Metadata, Statistical Pattern Recognition,

Multi-dimensional probability density functions, orthonormal se-

ries approximations

1. INTRODUCTION

This paper provides a means for enhanced creation and utilization of

full motion video by examining the need of encoding the video with

critical information (metadata) [1, 2]. It is not realistic to expect to be

able to derive a complete understanding of a particular scene of in-

terest without additional metadata (or side information) that provides

necessary insight into how the video was acquired [3]. Examples of

metadata include location, altitude, speed and heading. The nature

of this insight is explored in this paper. The amount of additional

effort to encode the metadata with the video is trivial compared to

the added value, which comes in essentially two forms:

• The metadata confirms continuous custody (or not) of the ob-

ject of interest of the video; i.e. on a frame to frame basis

if target information is invariant, the metadata confirms that

the object of interest remains in the field of view.

• The metadata provides insight into the context of the video

itself, which is often lost after the initial creation; i.e. on a

frame to frame basis, metadata would typically provide loca-

tion and other information that provides useful context that is

often lost when video is archived for later use [4].

While these two capabilities may appear to be obvious, we are

not aware of any applications that actually accomplish them. Im-

portantly, creation of related metadata must be accomplished in real-

time at the point of video creation. In practice, this additional com-

plexity allows for an important requirement that is routinely ne-

glected [5].

To better perceive this concept, think in terms of conventional

control system concepts that have foundations in controllability and

observability [6]. To see this relationship, recognize that if there is

an automatic or manually operated camera in the drone, then both the

pose and location of the platform is almost as important as the image

itself [3]. Moreover, the most important element is the subject of the

image from the perspective of the imaging device. Generally, imag-

ing devices do not provide random scenes and orientations. Hence, it

is important to recognize the imaging process as a system that is sub-

ject to the governing scientific principles of mathematical control. If

in fact purposeful images are being constructed, then this necessi-

tates controllability and observability relationships, which can be ex-

ploited for cognitive and analysis purposes. Roughly, the greater the

ability to understand the cognitive properties of a video, the greater

the ability to derive a relationship involving controllability and ob-

servability of the object of interest and the associated pixels. Such

capabilities improve the basic data gathering, as well as the overall

operation of the system, as will be seen.

Using this approach we are able to create a video based repre-

sentation that is both controllable and observable in a classical sense.

This capability is the essence of what is is known as continuous cog-

nition. Formalizing the space in which a system is both controllable

and observable has the desired attribute of extending the usefulness

of such a system, especially in systems which are subject to contin-

uous operations [7]. Alternatively, this can be thought of as a means

for continuously conveying information versus just pixel data. One

tangible manifestation of the benefits of such an approach are exem-

plified in Figure 4, where full scale hands-off flight operations (pilot-

less) were achieved and the system performed self-observability and

controllability with no human involvement for an extended period of

time through various environmental conditions. Such a capability is

a precursor to full-scale autonomy combined with a completely trust-

worthy device capable of providing information containing objects

of interest and associated meta data with no human interaction.

2. COGNITION OVERVIEW

The fact that a human is continually “aware” of their surroundings is

a diverse subject [8, 9, 10]. We have no interest in broadly discussing

the more general aspects of the human visual system. However, by

focusing on a subset of human cognitive tasks, important and per-

tinent results are achievable. We claim that human based continu-

ous cognition encapsulates what is essentially the real-time ability

to combine sensory inputs and decision making in order to maintain

a satisfactory and safe existence. For practical reasons, we will ap-

ply the concept of “continuous cognition” to a generalizable limited

subset of human capabilities. In this paper, continuous cognition

indicates that a robot (or human) is able to continuously confirm



critical object of interest parameters such as identity and location.

This is broadly applicable, yet limited as compared with all human

situations of interest, in that continuous cognition (robotic) is both

feasible and achievable, as will be demonstrated. We take advantage

of the fact that when electronic images are under consideration there

is typically a purpose behind the motivation to “gather and collect”

light or other radiation and assemble it in the form of arrays of pix-

els. We will call this information gathering robot an InfoBot. This

can be thought of as a machine or an algorithm as shown in Figure 1.

The term “target” will be applied to the primary purpose or subject

matter for which the radiation (light) is being gathered (see [11] page

17 for example).

Fig. 1. InfoBot - A Machine (algorithm) that converts Radiation to

Objects of Interest (Targets)

2.1. Illustration for an InfoBot

The combination of a manned aircraft and its pilot operating with no

dependencies on any navigational aids - so called visual flight rules -

can be thought of as an illustration of the concept of an InfoBot. The

pilot relies on his ability to gather radiation with his eyes and con-

vert recognizable objects of interest into a means for self-navigating

from point to point. This is a particular type of InfoBot yet it encom-

passes the key elements of a system that is both controllable and ob-

servable. Because of essentially unencumbered freedom of motion

and the ability to point their eyes at whatever object is of interest, the

system is both controllable and observable and the stream of “video”

that enter the pilot’s brain is very purposeful. For more generalized

problems of interest that would be associated with an InfoBot, the

ability to both:

• auto-recognize - maintain an audit trail confirming identity

of an object of interest (can be thought of as memory of recog-

nizable temporal and spatial observations for associated ob-

jects of interest),

• auto-navigate - maintain a meaningful object of interest in

the field of view

is foundational in nature. Hence, it is reasonable to expect that useful

video information must also be able to provide such capabilities in

order to at least be minimally effective at providing purposeful infor-

mation (at least for a large subset of generalized targets of interest).

For real problems of interest, the associated augmented metadata

of interest can be described as follows:

PIK = [TID,P, L,W, γ, α,DATE,TR]

where

PIK - Precision Information Kernel

TID - is the metric which determines the identity of the object

of interest

P - is the location of the center of the field of view, which

corresponds to the object of interest (note: location of the

platform can equally well be expressed in terms of the loca-

tion of the object of interest)

L,W - is the size of the object of interest

γ - the associated dimensions of the array of pixels for the

indicated range

α - Angle of the pose vector relative to the airborne vehicle

DATE - is a time stamp

TR - is the separation (range) between the object of interest

and the vehicle

In the context of what we described above, the usefulness of

the PIK metadata is apparent. It becomes the useful “commentary”

for a frame by frame description of key cognitive considerations in

the video which are equivalent to generalized auto-recognition and

auto-navigation.

So the key problems to achieve such capabilities reduce to de-

termining:

• TID

• γ

To achieve desired system level functionality all elements of the

PIK are required. The next section will describe means for deter-

mining a metric for TID. Other elements of the PIK, which are less

challenging, will be omitted.

3. DETERMINING PIK PARAMETERS

Previously, we postulated that by determining the significant statis-

tics for a sub-image associated with a target of interest, there would

be a reasonable representation for creating a relative signature [12],

[13], [14]. Such a stochastic process is a fundamental characteristic

for information flow associated with specific TID’s and as such their

ought to exist a suitably chosen discriminator.

The MGS (Multivariate Gram-Charlier Series) discussed in[15]

is a suitable means in its multi-dimensional form for representing

a probability density function (p.d.f). (statistically) based relative

signature for the TID’s of interest [12],

f( ~X) =
∞∑

s1=0

· · ·
∞∑

sn=0

E[
n∏

i=1

Hsi(xi)]
n∏

p=1

Hsp(xp)G(xp)

sp!
(1)
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1√
2π

exp
(− x2

2
)
.

The Hermite polynomials are defined implicitly by

exp(tx− t2

2
) =

∞∑

i=0

t
iHi(x)

i!
.

We initially concern ourselves with a vector ~X ǫ R2 such that

we have the following expression for a 2-D p.d.f. that is likely to be

associated with planar properties of interest,

f(x1, x2) =
∑

∞

s1=0

∑
∞

s2=0

E[Hs1
(x1)Hs2

(x2)]

s1!s2!
×

Hs1(x1)Hs2(x2)G(x1)G(x2).



The first 6 Hermite polynomials are expressed as:

H0(x) = 1

H1(x) = x

H2(x) = x
2 − 1

H3(x) = x
3 − 3x

H4(x) = x
4 − 6x2 + 3

H5(x) = x
5 − 10x3 + 15x

and E[ ] represents the probability space of the Expected Value

Operator.

4. PIK ALGORITHM

Fig. 2. Butterfly Pattern: Illustrates 5 different arrays of pixels; The

first one is not numbered and has the “star” (representing a TID) at

its center, an array of the same dimensions shifted left is numbered 1,

shifted down is numbered 2, shifted right is numbered 3 and shifted

up is numbered 4, for a total of 5 different arrays related to the single

TID

In this section the generalized approach will be described, fol-

lowed by some numerical results. We assume that the inputs to the

signature generating algorithm (derived from (1) ) are represented by

Figure 2. The central array of pixels corresponds to a known target

of interest at time tk−1. Labeling the full set of pixels at time tk−1

as Γk−1 and the associated set of pixels associated with the target

of interest as Tk−1 we choose the cardinality of Γ to assure that

Tk−1 ⊆ Γk−1. We also assume that the physical dimensions of the

pixels corresponding to {Γi ∀ 0 ≤ i ≤ n} where n is the number of

time epochs of interest, is constant. For the illustration involving a

flying vehicle, this is straightforward to accomplish through adjust-

ment of range to target and or focal point zoom. It is important to

note that this constraint is important since there is no assumed a pri-

ori target model. Assuming that the frame rate is sufficiently high,

then at time tk one of four sets of arrays indicated as {1, 2, 3, 4} in

Figure 2 will contain the indicated set Tk.

Since we assume that rotationally invariant statistics for a partic-

ular TID will not be Gaussian, then (1) becomes a convenient means

for representing the associated p.d.f. It provides a means to repre-

sent a convergent orthonormal approximation to the p.d.f. that is

precisely associated with the array in question. Most importantly, it

is a means to positively indentify an object of interest from one frame

to the next. By assuring ∀ k that Tk ⊆ Γk and by applying (1) to

successive Γk we have a means for measuring successive p.d.f’s and

comparing them to ones known to represent the desired TID . Again,

in order for the statistics to remain at least approximately stationary,

the cardinality and associated physical dimensions of the pixels must

remain approximately constant.

For each time epoch, j, according to Figure 2, both Tj and Γj

can be further generalized as T
p
j and Γ

p
j where {0 ≤ p ≤ 4}.

Hence, assuming Γ
0
k−1 contains the object of interest, we wish to

find which of the subsequent Γ
p

k ∀ {0 ≤ p ≤ 4} that contains the

object of interest.

To accomplish this, we introduce the concept of a “signature”

where

~Soriginal(Γ
0
0) =

[(L1{f( ~X0}+ L2{f( ~X0)}), E[ ~X0], (E[ ~X2
0 ]− (E[ ~X0])

2)

corresponds to the TID for the initial object of interest. By also

creating the comparison operation defined as

~Scompare(Γ
p

k) =

[(L1{f( ~Xk)}+ L2{f( ~Xk)}), E[ ~Xk], (E[ ~X2
k ]− (E[ ~Xk])

2)]

∀ {0 ≤ p ≤ 4}

we wish to find the subsequent, p, to

minimize{~Soriginal − ~Scompare}∀{p} (2)

Hence, the PIK Algorithm is one of continually re-finding the

statistically significant signature of interest, derived from (1), by de-

termining Tk which solves (2) to find TID , in real-time (frame-by-

frame).

4.1. Numerical Illustrations

Figure 3 indicates entire scenes for frames 0, 1, 2 and 3. The original

Γ
0
0 is found in Figure 3(a), which gives rise to ~Soriginal(Γ

0
0). De-

veloping ~Soriginal is accomplished by using (1) along with the inter-

mediate results associated with this numerical calculation as shown

in Table 1 . For successive frames results of using (2) are shown in

Table 2 where the minimum corresponds to the TID.

MGS C0 C1 C2 C3 C4
terms

88.000 87.987 68.981 32.850 17.425

MGS C5 C6 C7 C8 C9
terms

68.981 93.273 57.844 24.878 32.850

MGS C10 C11 C12 C13 C14
terms

57.844 53.311 24.601 17.425 24.8778

MGS C15 C16
terms

24.601 14.593

Statistics Mean Variance

115.855 1.217e+003

Table 1. ~Soriginal(Γ
0
0) for Figure 3(a); MGS coefficients for trun-

cated f( ~X) with maximum s = 4 (17 terms in series) and some as-

sociated statistics as determined by a two dimensional form of (1).

5. RESULTS

By combining a means for real-time frame by frame solution to (2)

(PIK Algorithm) we are able to both maintain the target of interest in



(a) (b) (c) (d)

Fig. 3. Sample Frames: (a) - Frame 1, (b) - Frame 2, (c) - Frame 3, (d) - Frame 4

~Scompare(Γ
p
1)−

~Soriginal(Γ
0
0) zero shift left shift right shift down shift up shift

266.125 1214.9813 1382.1202 1486.6939 899.3213
~Scompare(Γ

p
2)−

~Soriginal(Γ
0
0) zero shift left shift right shift down shift up shift

152.601 1130.3552 1354.6514 11880.1486 488.3406
~Scompare(Γ

p
3)−

~Soriginal(Γ
0
0) zero shift left shift right shift down shift up shift

1000.2937 366.974 867.3253 211.6414 1381.7229

Table 2. Comparison Norms Results (best fit for each row is bold face type) with descriptive phrases for each ”p”

the field of view, as well as determine how to maintain constant pixel

size (adjust vehicle position and or camera zoom) in order to provide

both a continuous stream of information rich video, as well as assure

the system remains both controllable and observable without any

human involvement. Figure 4 confirms these results which can be

thought of as robotic continuous cognition. The associated precision

exceeds what can be achieved by a human pilot, with superior cogni-

tive abilities. The robot can obviously not compete with a human in

generalized cognitive abilities, however, for specific repetitive ones

it can exceed combined human based perception and control func-

tions. Moreover, these capabilities were confirmed over an extended

period of time, which suggests that even if a human could achieve

such a level of competence, it would be very difficult to maintain

such a level of performance over an equivalent period of time.

Fig. 4. Example of Continuous Cognition via auto-navigation and

auto-recognition based on (1)

6. CONCLUSION

By combining a PIK Algorithm with full motion video, we have

presented a means for increased cognitive abilities. As has been pre-

sented, such an approach is consistent with a well-formulated con-

trol problem that simultaneously satisfies conditions of observability

and controllability under a wide variety of circumstances. Confirma-

tion of the principles is characterized by a “replay” function that is

able to retain all significant information in manner that is consistent

with (or else exceeds) human cognitive abilities to assure delivery of

trustworthy and verifiable information.
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