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§ A PRACT ICAL ALGORITHM FOR NUMERICAL
. DETERMINATION OF PERIODICAL REGIMES IN
: NONLINEAR OSCILLATORS

G. L VIVIANI and YA SAET
Lamar Umverszty, Beaumont Texas 77710 USA

o ABSTRACT An effectlve practlcal algonthm based on: array onented computatxons sultable for use"_ '

‘with -'vector computatxonal archltectures, is descnbed The - algonthm allows for deteremmatlon of

' . self-oscillations with- unknown (in advance) penods, yet also mcludes the 31tuat10n when the penod is -
,predetermmed partlcularly in the case of forced oscxllatlons 3 : G

| "I'NTRODUCT‘ION‘ 5

: ,.The collocatlon method in nonhnear oscﬂlatlons is descnbed demonstrated and' =
~ broadly used in [1]. Even ‘today the works [2, 3] (on forced osc1llat10ns) are still -
- quoted for their concrete numerlcal results, regardless of significant gains in comput- :
ational resources. Nevertheless, new and unexpected numerical solutions were found
[4] even for the class of oscillators which have been considered in [2]. The Galerkin -
"~ method used in [2], was not developed for: autonomous systems. although ‘it was

- mentioned as a p0531b111ty in [5, p. 256] with no elaborated details. As for [1], m»' EERp

~more than 150 pages of the text, only four pages are devoted to concrete numerical

" discussion of autonomous problems, and no viable algorithms -are presented. Re-

cently, [6] demonstrated accurate results only for the Van der Pol’ equation in the -
relaxational regime using ISL II software based on solving the- Cauchy problem on a
large temporal interval. However, such an approach becomes inefficient, or not
possible, for oscillators- with a number of different periodical regimes. Meanwhlle,
there is a growing necessity to address this problem due to new applications [7-9].
From time to time, different attempts of heuristic approaches appear (see for -
~ instance [10]) while a review of the area’ reveals _persisting dlfﬁcultles in numencal
investigations of oscillations in autonomous systems.

As is known, the greatest difficulty with autonomous systems is that the penod of
the self-oscillation is unknown. In this work, the resolution of this obstacle, in a
computationally feasible and efficient manner, is achleved '

LIENARD OSCILLATOR

For concreteness the algorithm is demonstrated with the example of a strongly
nonlinear Lienard Equation:
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- where O(x) and G(x) are polynomials of arbitrary degrees and G(x) is such that
G(x)x>0 for x#0, G(0) =0. (For the autonomous oscillator, R(¢) =0). Such an
- oscillator is represented by a circuit shown in Fig. 1, (in this case G(x)=x, with
- obvious time rescaling), where H(v) is a voltage dependent nonlinear 1-port. In eq. -
(1), O(x)=dH(x)/dx. In Fig. 1 the current-voltage characteristic, H(v), corres- -
 ponds to the data in Example 2 below. Dotted lines show the one stable relaxational
~ limit cycle. Such characteristics are realizable and have presently. found some
~ applications. If x(¢) is a periodic solution to eq. (1), with period T, then it can be

- represented by its Fourier Series,

Cx(B)=X (e, cos kowe + bysinkwr)
)= 2o corons + Sl
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Figure 1. Nonlinear oscillator circuit.
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: We introduce the following necessary notations,
Cx()=2 (aycoskwt+ b sinkwr) @
e k=@ D e Sl s e
oy _?Wi"tl__l'_'po‘s'i'tiv’e' integer M, vector X

_vector X%,

 RSEM@RGLERG):

- where

) .k,j(_’,’,l’_z’-;.j Pl B

S and P %FZM,; (’Th'ev symbol * denotes trathoSiiian) o  ‘ LI T R
There. exists [1, p- 124] ‘a» matrix, {2, with P TOWS and 2M columns such thatf RN

which is'ur;'i_qué_l‘y:deterihined,' by identical equality Wifh"réspé’ct tot, ’s, in eq. (3).In
the same way there exists a unique matrix, I, With 2M rows and P columns such that, -

SRR Rt L e
Denbfing thévsth order derivative, - S e L i
P Ao ps L

it is si:réightforward to calculate a matrix W°, such, that, -

: : va__‘ sy P - pursy P : S '

~ ALGORITHM

We will first-describe an algorithm for forced oécillatioﬂs, from wh'ic'h,»the algorithm v
for autonomous systems is developed.
Forced Oscillations

With T known, and P =2M, the development of the collocational scheme forbeq. 1) -
yields, .
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G Z(XP) WX + Q (X )W‘X”+G -k —0 (7) ;
Q (X ) (CN(X ) +CN J(X )N 1 +coe) ‘
; v‘ ¢ wrth (X )N * denotmg a vector that is componentwrse rarsed to the (N—k)th power." ’ ;»
- where N is the order of the polynomial Q(x) with coefficients: ck, (k=0, 1,...,N),

. andeisa column vector with-number 1’s as its entnes of the same dlmensron as X Lo .
B GJP and R ‘are recerved in the same manner as Q and X : Sy

G (X) (gN(XP) +gN 1(X) i +goe)

: ,"w1th coefﬁcrents gk, and
»'_(R(to) R(tl) 1"\’(t ))*

Introducmg X ‘as an mmal guessed solutlon, we deﬁne, , S

X_X ‘v(:}Z{) atx) (8)

_ L here the k in X denotes ‘the kth 1teratron and o is an externally controlled :
o parameter for adJustmg convergence charactenstlcs We obtam .

&Z ,
c?X

W i (&Q )WX ‘ QPW +(‘;§P\). (9)

. REMARK 1: The above scheme, relymg on eqs (9) and (8) allows for efﬁc1ent

~ iterations, especially ‘when one notes that. W% remains fixed (see Appendix).
 Contrary to- the -algorithms in [2], our formulas are. ‘presented in array organized
- computations. It should also be noticed that the algonthm descnbed is'a further
s development of the collocatlonal scheme in [1] o : »

. Conszdemtzon of Self Osczllatzons

. For the autonomous equatron R(t) 0 and T is a new unknown parameter
- Changes to the numerical scheme described for forced osc1llat10ns result in the
following:
After introducing P 2M+ 1 equ1d1stant collocational points (mstead of 2M ) the
matrix of eq (4), .Q now has 2M +1 rows and 2M columns, as does the matr1x
W of eq. (6). S :

As a result, the drmensron of Z is greater by one, (compared to the nonautonomous
equation) and the vector of unknowns is redefined to be vP=(x%, T)*. By

apphcatlon of the cham rule to the equation for Z,

Z(X) W27 + nt(X” )WX +G"=0 , (10)
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one obtains -

VTV axT) TV @ T) e
‘where the vector (0, T) has P zero elements and the vector (X”,0) has one zero
_element and hence both have the same dimension as vector V. The result is that each

- term of the right hand side of eq. (11) is multiplied by a diagonal matrix. The = -

- revised iterative formula for V becomes.

Wewiea( B ey

The following formula is used for calculating W*s as, 5
: ' = "‘“_'i.W‘ =*—’+1"’IW e

iw

A similar calculation is used for revising elements of the matrix of the second term in -
-€q. (11), which involves derivatives of W*. L R

- REMARK 2: It should be noted that finding the period is an inalienable part of the
 algorithm. Also, the convergence characteristics of the Newton-Kantarovich itera-
. tions of eqs. (8) and (12) benefited from a subiteration (with respect to «) to insure
- reduction in the norm of the error. = 0 o T

~EXAMPLES . -
* Analytical results on the existence of a family of limit cycles for the Lienard
- Equation can be found in [11; 12]: For “very large” u >1, the self-oscillations can
. 'be found on the basis"of geometrical constructions in the phase plane using the
nonlinear current-voltage ‘characteristics of the 1-port. The description of such
- relaxational limit cycles on the phase plane does not involve the differential equation
~itself [13, Ch. 3]; but finding the period takes serious efforts, see [13] and [14]. As
‘we shall see in examples, methods of solution for large u, do not allow one to
determine all limit cycles for intermediate . =~ - SR e s IS

This algorithm allows for easy determination of more than one periodical solution. -
In [7], for this purpose, the ‘analytical method of small parameter was used.
However, the numerical effectiveness of the method is- very limited. The same

- problem exists even for nonautonomous systems. For instance, in the examples of -
~ forced oscillations considered in [2], only one periodical solution was found, while it
is known that there are several of them for a specific set of parameters [15].

The proposed algorithm was implemented on a mainframe computer. For illustra- =
tive purposes, certain concrete characteristics of the nonlinear element in the circuit
were chosen. Specifically, Q(x) was assumed to be an even function and G(x) was
assumed to be odd, assuring that the solution x(t), would have the symmetry
property, ' ‘ ’
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X =-x(+TI2) Ve

This allowed for the points f,, to be equidistant on the interval [0, 7/2] (instead of
[0, T]), thus reducing to P =M +1, the total number of points considered in eq.
~(3). Due to the symmetry, elements of X', with even numbers, vanish. The
- formula’s for W’ are given in the Appendix. Due to memory allocation restrictions, - - e
- For the following problems a truncated solution vector of coefficients, X', is
. displayed in two columns, with each row corresponding to the ‘pair, (a;,b;) -
~ k=1,3,5,... Those values which are not indicated are neglected. ~

 EXAMPLE 1: The Van der Pol Oscillator, is chosen for comparison with previous -
~ results. Due to the above symmetry property, the formulas of the Appendix are
. applicable. For this case, M =231, p=35,¢,=1,¢,= 0,co=—1,8,=1,8,=0(see -
~formulas for @(X) and G(X)) . The solution for X" and T, with the magnitude of the -
- maximum component in vector Z less than 107%4s, L

0.63975 - 2.00656
0.193832 . 0.550989
0116427 0 0.283401
0.0800519  0.174215
10.0578738 ~ 0.116588 -
. 0.0428625 = 0.0819679 -
0.0321731  0.0534932
00243470 . 0.0441395
. 0.0185223 - 0.0332704
0.0185223  0.0332704
©0.0141419  0.0253746
-0.0108249" -~ 0.0195272
-0.00830130 - 0.0151327
0.00637472 . 0.0117925 -
. 0.00490021 - 0.00923065
~0.00376954 - 0.00725180
0.00290124  0.00571441
0.00223368 ~ 0.00451435
©.0.00171999 - 0.00357395
0.00132443 ~ 0.00283460
0.00101970 = 0.00225174

T=(1.85)2.

EXAMPLE 2: Here G(x)=x, and Q(x) is determined as a polynomial - with
e =4.07437, ¢, = —12.1467, c, =8.7441, ¢, = -0.985997, ¢, =0, k=1,3,5, M=
231, w=1.2. Three solutions were determined, indicating two stable and one
unstable limit cycle as shown in the phase plane plot of Fig. 2.



“G.L. Viviani and Y. A. Saet: Numerical determination of periodical regimes 133

2

e 'ﬁgufe 2. vPha‘se'plaiie_ tepresentation of limit cycles for Example 2.

~ Solution 1 T

—2.07840E-2

| —4.39407E-3
~1.05242E-3
8.58229E-5 -

T=(1.02562)27

8.76049E-2
—6.8527E-2

1.01149E0
1.71688E-2
‘8.61603E-3
—3.09938F-3
~1.50743E-3
~5.55174E-4

- with the mag‘nitlide of the maximum component in vector Z less than 10_6, 

Solution 2

x'=

—2.58466 E-2
—4.00712E-3
—1.29606E-3

2.82830E-5
1.51327E-4

T'=(1.02057)27

7.52977E-2
—5.88986E-2°

1.07398E0
- 8.53827E-3

1.00207E-2
—2.60972E-3
—1.90544E-3
—5.64474E-4
—1.97558E-4

with the magnitude of the maximum component in vector Z less than 10~%
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Solutmn 3 :
0.0611846  1.65626
—0.0487357° 0.0664727
~0.00205155 - -0.039654
-0.0102421 -~ 0. 0141221
—0.0184955 0;0065687'}[
—0.00116644  —0.00589262
. 0.00389732 - ,—0 000169571
e »—-o 00128906 - 0.00114667
. —0.00102106 0. 00123294 -
. 70.000795964  —0. 00031_,8091,‘
. .0.000104261 - 0.000521417
- —0.000287257 - —0.0000897117 -
-0.000111618 ~ —0.000178804
©0.0000822526. - 0.000102499
~ —0.0000753523 - 0.000033612

00000021451  —0.000051067
S T= (102622)277 s e

ol ’w1th the magmtude of the maxnnum component in vector z less than 10 6

B REMARK 3 The examples shown are: mtended to venfy the method In Example' [
2, note the close locations of two: of the limit cycles in the phase: plane.’ Ttisvery .
ik difficult - to dlstmgulsh between  these two limit cycles - with. certamty, usmg a
" ‘Cauchy-Euler like. method. The asymptotxc ‘method [13], as used in Fig. 1, is also =«
limited in that it does not reveal the existence of these solu‘uons wh11e our algonthm
clearly reveals three different solutlons R S » :

K APPENDIX
'The followmg expressmns apply for the symmetry, o
x(t) = —x(t + T/Z)

: for the autonomous Llenard oscﬂlator Odd symmetry is guaranteed if in eq (1)
~ G(x) is an odd function and Q(x) is an even function. P =M + 1 '

Defining the vector X', Lol : v s .
XFE(al,bl,a3,h3,..vb.v,aM, by)* |
and letting X” be : ‘ - ’
X7= (3 (0)s Xag ()5 - - - » Xpg1p))*

with equidistant points chosen on the inter'vall[O, T/2],
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t ‘ “T' - k 0,1, 25 P¥1v' o @iyt
Letting r

: then the elements of the rectangular matnx W’ are

N :

Wi M+1 SEI( l)s cos (P 1)“"M+2’ (k, ,.1)SM+1 e
: ~ @Ay
when ] 2h Hhie i
W M+1 Z( l)s S‘“[(k 1)SM+1 (p 1)SM+2]
when] 2h+1

k=1 M+1 p= 1,2, M+2 h= 012

and Z’ denotes summatron over odd subscnpts There lS a more srmphﬁed expres-_ E
- sion forW : L , S , L0
' '(M+1')/2

k 12 M+»1;'fpv='1,2,k. M+2

s availabk; L
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