United States Patent

US006374144B1

(12) (10) Patent No.: US 6,374,144 B1

Viviani et al. 5) Date of Patent: Apr. 16, 2002

(549) METHOD AND APPARATUS FOR OTHER PUBLICATIONS
g%ﬂ{&L}h?fLAS’iZ’;%E%AE%I&%S Cho et al., Journal of Manufacturing Systems, vol. 14, No.
4, pp. 252-263 (1995).
(75) Inventors: Gary L. Viviani, Boxford; Nick A. Klein et al., Computer, vol. 27, No. 1, pp. 24-33 (Jan. 1994).
Parisi, Gloucester, William G. * cited by examiner
Callahan, Rockport, all of MA (US)
Primary Examiner—William Grant
(73) Assignee: Varian Semiconductor Equipment Assistant Examiner—Paul Rodriguez
Associates, Inc., Gloucester, MA (US) (74) Antorney, Agent, or Firm—Wolf, Greenfield & Sacks,
P.C.
(*) Notice:  Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 7 ABSTRACT
US.C. 154(b) by 0 days. A method and apparatus for controlling complex systems
includes hierarchically coupled subsystems representing
(21) Appl. No.: 09/219,584 operative functions of the system. The hierarchically
coupled subsystems are coupled to collect command data
(22) Filed Dec. 22, 1998 from auser and signal data from the system. Each subsystem
may include one or more state machines and one or more
digital signal processing and conditioning unit (DSPCU)
(51) Int.CL7 ... ... GOSB 11/01; GO6F 19/00 objects. The DSCPU objects accept process commands and
(52) US.CL .o, 700/12; 700/8; 700/121 convert control system signals into states for further pro-
(58) Field of Search ............ccccccce.ce. 700/8, 9, 12, 19, cessing by the state machines. Associated with the DSPCUs
700/20, 96, 121, 14 of each subsystem is a data flow diagram for dictating an
order of flow of commands and signals at the DSPCUs. A
(56) References Cited method of controlling the system represented by the hierar-
chically coupled subsystems schedules the execution of the
U.S. PATENT DOCUMENTS subsystems according to an execution protocol. According

4551815 A 11/1985 Moore et al. .ovovee....... 708/232 to the execution protocol, for each cycle of execution of the

4799141 A * 1/1989 Drusinsky et al. ............ 700/12  system, the hierarchically coupled subsystems are first ana-

5,197,011 A * 3/1993 Biemans et al. .............. 700/96 lyzed in ascending order of the hierarchy, with DSPCU

5,465,375 A * 11/1995 Thepaut et al. ............... 712/15 objects being analyzed in data flow order before state

5,469,553 A 11/1995 Patrick ............. ... 713/323 machine Objects, and then in descending order of the

272%7522 2 * 13; iggg SBCh‘;'H ettal.l """ ;Zé; ;43‘; hierarchy, with state machine objects being analyzed before

675, enton et al. ... . . . .

5680702 A 11/1997 BultSu ovveoooveeereereeen, 707/100 Elzg%{yogggz d]e?; rigfeltf: f iigf;ilglgy fﬁ‘;:;gﬁ;c?sf tgﬁ

5,691,895 A * 11/1997 Kurtzberg et al. ............ 700/29 7’ . .

5710700 A * 1/1998 Kurtzberg et al. ........... 70020  are relatively lower in the hicrarchy are used to update the
state of any given object. During the descending execution
of the hierarchy, command data received from only those

FOREIGN PATENT DOCUMENTS objects that are relatively higher in the hierarchy are con-
EP 0644573 Al 3/1995 sidered when updating the state of any given object.
WO WO 97/12303 4/1997
WO WO 98/29817 7/1998 31 Claims, 8 Drawing Sheets

27 Y }/ SCAN

MOTION/ BEAM
SCAN CURRENT
CONTROL

~120

200




US 6,374,144 B1

Sheet 1 of 8

Apr. 16, 2002

U.S. Patent

no

08

002 <

INIHHNO |

Wv3d

SS0OHO

/A

Y

TOHINOOD
NVOS

{NOILOW

g7

L

¢

4

0.

09

174

Y02

| B4
T
HINHOISNVHL
NOLIY10S] miog ~0¢
e +
1z
Y00z AOOL
0 9 o9

.mm ’ o

TOHLINOD
310d %®
H3IWWIHL

44

MZ

€c

YOZl




U.S. Patent

Apr. 16, 2002

Sheet 2 of 8

Graphi

cal User Interface |80

US 6,374,144 B1

CPU1

150
N

Processor je—»

Table (D5)

Command Ingutl
Output (D4b)

~_101

™S_70

1832 _—

CPUO

130
N

Processor |+

Hierarchy (D1)

A

Protocol (D2)

Y

Scheduler (D3)

102

128

Memory

N\_104

1227

Loop Master
Hardware

11O (D4a)

—~_60

120




US 6,374,144 B1

Sheet 3 of 8

Apr. 16, 2002

U.S. Patent

€ bl

0/¢

walsAsgng Jajuedw)

mo|jeieq Jawejdwi

walsAsgng wajsAsgng
|0JJU0D) UBDS fwmw 9|10d B EEE_P%EN
mojjeleQd o mojjeieq <
ﬁl |0JJU0D) UBDS nodsar 9|04 3 Jawwi| ﬁ
NOdsd N -{NOdsa
ARE! qo.le WS4
S |0J3U0D UBDS 9|04 ® Jaww] S
20.LE .\/ w ,\/ f B0LE
- A o L2
. 2
m ...nm m +
e | e |7
RN N

NS 1awueidw)

0Lk




US 6,374,144 B1

Sheet 4 of 8

Apr. 16, 2002

U.S. Patent

bl

| WS41a1soW
mvm o>u~_.6£w~_~w:cx.v£u 1$
r BoigMolIPIod N a>uz.m§mmcw“§8 puD 1§
aIANvH ) .
||||||||||||| : J0UA3 OI41en3sq0 "WSI LON 1$
induioybia | | Awolowbigiony dowa ool ]
asussuO | 1 JBHIRSUSSUO |
YOI
WOILRD
f ‘_O#Ou_—uc_ )
c0€g
( 00e_- 4083 O1ASI0 W3 1§
(™ A9 ) _
{L ;oA91) WSJ r— dnoIOanSWSd \ﬂ
&3 S0€
BADSA0 WS4 1S —
5O 1INI A0 440 oo_no WS3 1§ o
S
‘JOAIBSQQ - I
o 20 VMV 18 MO NO 098 s\mﬂ 1$ , .
€ _ . &2
NO 5 MO 440 19ABSG0 "WSH 1§ £
‘asuasuQ indulionbia I__| 00L ]
MO NO Z M
£0¢ y0e )6 zo.hw&wm_no WSH1§ —
zgo_,%_z:m :
‘asuasuQ’indujopbig i$ |
Jod Ol L $10.43 Jo4 Bunoyuow ~
. _J
9 JETYEo]g) D lojpd1pu| )




U.S. Patent Apr. 16, 2002 Sheet 5 of 8 US 6,374,144 B1

(  START )

PREPARE RESOURCE | 220
DRAWINGS

|

RESOURCE
DFD,
FSMs 222

COMPILE RESOURCE |~

DFDs, FSMs 224
CONFIG
FILE 226
\
BUILD GENERIC | -~ BUILD CONTROL | ~

INTERFACE 228 SOFTWARE cope | 230
GENERIC 229 SC(%\T‘\TAF,;%LE 031
INTERFACE CODE

( FINISH )

Fig. 5



U.S. Patent Apr. 16, 2002 Sheet 6 of 8 US 6,374,144 B1

Flow Diagram Objects

Ordered Pointers to Data Ordered Pointers to Finite
State Machine Objects

;

!

(Pointers to Objects)

250 SCHEDULER ~ [\_2%0 253
261 SOFTWARE 256
1
Y Y
i i UPDATE DOWN
069 UPDATE UP LIST (Pointers to Objects) 266 LIST 269
2 T 265 ) T 2
Y y Y e Time Period y Y Y ¥
A B C D Based Lists A B C D
(Pointers to Objects)
, 263/,, 264 | v 267J,, 268J‘ v
Al B1 C1 D1 Time Balanced Al B1 C1 D1
B2 c2 D2 A, B, C, etc, Lists B2 c2 D2
C3 D3 (Pointers to Objects) C3 D3
C4 D4 C4 D4
D5 D5
D6 D6
# of fundamental b7 # of fundamental D7
periods in period D8 periods in period D8
forA,B,C,D l forA,B,C,D l
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
\ Grouped
and
Sequenced
A1 [AT[AT{ AT | A1 AT [ A1 | AT| galanceq |AT | AT|AT A1 A1 |AT |AT | A
B1|B2|B1(B2|B1|B2|B1| B2 Lists B1|B2|B1|{B2|B1|B2|B1|B2
ci|c2|c3|ca|C1|C2|C3|C4 C1|C2|C3|C4|C1|C2|C3|C4
D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 |(pointersto |D1|D2 | D3 | D4 | D5 |D6 | D7 | D8
Pointers to
Objects)
Y 4
290 29 A

LIST OF UPDATE UP
LISTS

LIST OF UPDATE

(Pointers to Pointers to DOWN LISTS

Pointers to Objects)

Fig. 6




U.S. Patent Apr. 16, 2002 Sheet 7 of 8 US 6,374,144 B1

{ START )

A

Assign Group Value [~_700

Allocate Subgroups |~_702

706 716
g 704 )
\
Fetch object from Fetch object from
Update Up List Update Down List
708 710 718 720)
Object.time+ YES | Subgroup Object.time+ Subgroup
Subgroup.time> = Next Subgroup.time> = Next
Allocated time Subgroup Allocated time Subgroup
? ?
NO NO y
y
Place in subgroup Place in subgroup
Total fime = Total fime + = 712 Total time = Total time + ./~ 799
Obiject.time Obiject.time

-t

NO

Total time = Max
Time?

714

Fig. 7



US 6,374,144 B1

Sheet 8 of 8

Apr. 16, 2002

U.S. Patent

00S avadHL AHVANOO3S

805 "\

‘LOS 1S1] Uo sjsanbal
alow Aup §I Yo8YD

S3A iALdW3 111

OLS

‘pajo|dwod sp |sanbal JbW
31VIS 1S3NO3Y 31vadn 905

i c

1S1] UO punoy jsanbal xeu By} 94Nd8X3
1S3NO3Y LX3IN 31ND23IX3

] 0S8

L

"SWIajl MaU 31D
alayy 1 Is1y senbau 3y} o} sjsanbal mau ppy
S1S3NO3IA MAN AdV

»

1sI1 poaiy] AIDpUOISS UQ SWBY MIN 404 JIDM
1IVM

s

8 ‘b4

i

1s17 1senbay

MBN pealyl
Riepuoosag

(
0S¥

it

s 1senbay

peaiyl
Aiepuooasg

(
10S

00t Av3adHL NIVIN

[

NV| WOoJ} MaU ppal
PUD NY| Of DIDP MU SHIM

oLy ™ NVI 31vadn IIA 3ISVHd

)

vy
/

uolduUN}) AIDpUoI9sS

AVIAHL AYANODIS 31vaddN
IA 3SVHd

4O uoYNIEX8 IO} S§23lqo NDdSA 4O IS!| puSsS

)

13pJo Moy} pjpp Ul UolNJaX3 NDdSA
uoHDN|DAT pPURWWOD NdJSA

av A 3SVHd

[y

Oy
vl

umoQq uoyon|dAj UCOEEOU WSS
Al 95044

AY2.p1a1y JO WOHOq 0} doj Wolj UoKNISXI WS

)

dn uolon|oA3 3)PIS WS
IIi 35¥YHd

Aupipiaiy jo doj 0} WoH0q WOolj UOHNISXI WSS

)

12pJo MOJ} DIDP Ul UcLNdBX3 NDdSA
uolIbNIDAJ 34bIS NDdSA
Il ISVYHd

80¥
90V~

Y
san|oA jndu| O/| maU poay
pUD SaN|DA INAING O/] MBU BILIM
O/131vadn
{ ISVHd
7y

3011 Joul JIPOLSd XBN 404 HOM
1IvM

t

yOv "\

[40)2AN




US 6,374,144 B1

1

METHOD AND APPARATUS FOR
CONTROLLING A SYSTEM USING
HIERARCHICAL STATE MACHINES

FIELD OF THE INVENTION

This invention relates in general to control systems and,
more specifically, to a method and apparatus for controlling
complex systems using state machines.

BACKGROUND OF THE INVENTION

Many manufacturing systems typically execute a number
of independent operations in a controlled manner to provide
a desired output product. One example of such a manufac-
turing system is an ion implantation system. The ion implan-
tation system is used for implanting ionized atoms or
molecules into a semiconductor wafer in order to insure that
the desired conductivity properties are met for the wafer.
The ion implantation system may include a number of
mechanical components, such as an ion beam generator and
vacuum pumps, each of which are independently controlled.
Interactions between the mechanical components must be
carefully controlled in order to insure that a viable product
is output from the system.

The interactions between the mechanical components of a
processing system are managed by a control system.
Historically, in the 1940°s and 1950’s, control systems were
entirely electromechanical and they did not involve soft-
ware. Following this period, with the advent of low cost
computers, software was utilized in order to provide “end-
less” flexibility. In software controlled systems, each
mechanical component of the processing system is con-
trolled via a software program. Each software program
includes an interface to support communication of informa-
tion. As the mechanical components interact, the effects of
the interactions are passed between software program via the
interfaces. A main software program may be provided to
prioritize the operations performed by the different software
programs to synchronize the interactions between the dif-
ferent mechanical components within the system.

Typical control systems are defined by a control system
architecture (CSA), a control system observability compo-
nent (CSO) and a control system controllability (CSC)
component. The CSA organizes subsystems of the process-
ing system into a structure that is logically consistent with
the physical system to be controlled. The CSO component
monitors sensory signals to determine the status of the
physical system. The CSO component monitors and modi-
fies the state of signals to actuators, where actuators are
associated with each component to control the operation of
the component. The signals may represent a continuous
measurement or a true/false measurement. The CSC com-
ponent determines which control actions to take based on the
changes detected in monitored signals.

For typical control systems, the combination of hardware
and software which comprises the CSA is not easily recon-
figured to adapt to new conditions and requirements asso-
ciated with the operation of the physical system. One reason
that control systems typically are not easily reconfigurable is
because of the integrated nature of the hardware and soft-
ware elements of the control system. Adding new control
instructions to the existing control system to support new
elements may affect the timing of existing interactions of
components within the system, thereby threatening the abil-
ity of the control system to perform normal operations.
Hence, once the system is designed, it is difficult to incor-
porate new elements without revising the entire system. For

10

15

20

25

30

35

40

45

55

60

65

2

example, in order to appropriately order the sequence of
operations by each of the software programs, the main
software program is designed to accommodate all of the
interrelations between the software programs. As a result,
the main software program must be capable of managing a
large number of exception conditions. For example, one of
the exception conditions may be that software program A
may be able to transition to state X if software program B is
in state Y or software program C is in state Z. Thus, the
design of the main software program is often complex,
degrading the performance of the main software program,
and hence the overall system, and making it difficult to add
or remove elements without numerous modifications to the
main software program.

Hence, even if a system can somehow be adapted to
incorporate new elements without revision, because of the
control and timing dependencies between the components in
the system, there may be significant doubts about the accu-
racy of the operation of the control system with the new
elements. As a result, it is difficult to attempt to adapt
existing operations or to reuse existing capabilities in new
products. Thus, software controlled systems may not truly
provide endless flexibility, and the flexibility that is provided
is often at the expense of reliability.

In addition, the appropriate handling of errors in a control
system including numerous independent software programs
is difficult. The error handling process may be incoherent if
the independent software programs are permitted to deter-
mine the appropriate method to handle an error, since the
determined error handling method may not be the optimum
method for the whole system. A centralized approach to
error handling may be provided by performing error han-
dling in the main program. However, adding detailed system
knowledge to the main program adversely increases the
complexity, thus reducing the overall flexibility of the whole
system.

Object oriented methodologies currently exist to analyze
and design control system behavior. However, they typically
provide only a development environment on top of existing
software and hardware control systems, and do not constrain
the complexity.

Accordingly, it is desirable to provide an alternative
method of controlling complex processing systems that
would be relatively less complex to implement than con-
ventional systems. The system should also be capable of
facilitating the addition or removal of new components and
allowing for an intelligent error handling process to be
supported.

SUMMARY OF THE INVENTION

A control system architecture (CSA) comprised of hier-
archically ordered subsystems is employed to provide a
flexible and reliable means of controlling complex pro-
cesses. Each subsystem is represented by one or more state
machines, which provide monitoring and control of the
subsystem, and one or more digital signal processing and
conditioning units (DSPCUs). The DSCPUs convert control
system signals into states for further processing by the state
machines and/or convert command inputs to send to the
control system actuators from the state machines. Associated
with the DSPCUs of each subsystem is a data flow diagram
for dictating flow of data between DSPCUs and order of
execution of the DSPCUs. Control system observability
(CSO0) and control system controllability (CSC) are enabled
through the interconnection between sets of parent-child
state machines in the hierarchy. Child states are visible to the



US 6,374,144 B1

3

parent one level up in the hierarchy. Data flow is through
explicit paths within one subsystem or up and down one
level.

In one embodiment, each cycle of operation of the control
system is operated according to an ordered protocol com-
prising four phases; a first data flow execution phase, an
upward state machine execution phase, a downward state
machine execution phase, and a second data flow execution
phase. The order of each of the components in the subsystem
that are executed in each of these phases is maintained in a
scheduled list. The operation of each of the execution phases
and a method and apparatus for scheduling execution of the
state machines and data flow diagrams are described in
greater detail below.

In one embodiment, data collection is synchronized to
occur at fixed points during the execution of the above
protocol, where data collection includes an execution of the
input signals received by the system, an execution of the
output signals provided by the system and receipt of com-
mands from a user interface associated with the system.
Collecting data at fixed points during the execution of the
protocol enables input and output signals to be controlled in
a manner that overlays the hierarchy and ensures state
consistency.

As mentioned above, the four phases of the protocol occur
in one operating cycle. In one embodiment, all of the phases
of execution are performed within a predetermined execu-
tion period. Thus, for a given hierarchy and protocol, the
time to complete execution of all tasks associated with all
subsystems is known. As the components within the sub-
system or the measured execution times are changed, the
total execution time of each phase of the protocol, the
schedule lists and/or data collection times are automatically
revised.

Hierarchically coupling the state machines in the above
manner facilitates the seamless incorporation or removal of
components from the control system since all data flow
component connections are explicitly defined. To add a
component to the system, appropriate connections are made
between the state machines and data flow diagrams that
represent the component and other components in the sys-
tem. During the execution phase, because the newly added
component has been added to the desired level in the
hierarchy, proper execution of the component and the timing
of the signals associated with the component may be
ensured. Removing a component from the system may be
performed by merely removing the subsystem associated
with the component from the hierarchy. Thus, no major
revision of the software need be provided for modifying the
control system. As a result, the control system of the present
invention provides both flexibility and reliability with a
minimum amount of complexity. The required revisions are
localized to the single parent in the hierarchy.

The hierarchical coupling of state machines allows excep-
tion handling to be programmed into state machines that are
higher in the hierarchy to appropriately handle exceptions
that may occur at state machines that are lower in the
hierarchy. An appropriate supervisory level within the hier-
archy may be selected, where the subsystem at the super-
visory level has appropriate information to make an intelli-
gent decision with regard to the handling of each exception.
As a result, the subsystems within the hierarchy are not
required to make an independent judgment as to how to
handle an error condition, and additionally error conditions
may not have to propagate to the top of the hierarchy to be
handled effectively.

10

15

20

25

30

35

40

45

50

55

60

65

4

According to one aspect of the invention, a system for
controlling a complex system of devices having intercon-
nected control system software components is provided. The
interconnected control system software components
includes one or more subsystems coupled in a hierarchy,
with lower level control system software components at a
given level in the hierarchy being included in a control
system software component at an immediately higher level
of the hierarchy. The system includes a plurality of hierar-
chically coupled state machines, with at least one state
machine associated with each of the hierarchically coupled
subsystems and means for evaluating the states of the state
machines for each of the hierarchically coupled subsystems
in an order defined by the hierarchy. Providing a control
system with such an organized data structure allow sub-
systems to be added or removed from the device without
requiring major modifications to the control system.

According to another aspect of the invention, a method for
analyzing a system having a plurality of interconnected
subsystems is provided. The interconnected subsystems are
coupled in a hierarchy, with subsystems at a given level in
the hierarchy being included in a subsystem at an immedi-
ately higher level of the hierarchy, and each one of the
interconnected subsystems being associated with a corre-
sponding one of a plurality of hierarchically coupled state
machines. The method includes the steps of evaluating, for
each subsystem, a state of the associated state machine,
wherein the order of evaluation of the associated state
machines is determined in response to an order defined by
the hierarchy of the one or more interconnected subsystems.

According to another aspect of the invention, a control
system for controlling a device includes a processor coupled
to the device. The processor includes a memory for storing
signals associated with the device, where the signals are
received from the device and are forwarded to the device
during operation of the device. The processor further
includes a hierarchical data structure comprising a plurality
of hierarchically interconnected subsystems representative
of the operative functions of the device, means for forward-
ing the signals to the hierarchical data structure and means,
responsive to the signals, for updating states within the
hierarchical data structure in a controlled manner.

According to another aspect of the invention, an ion
implantation system includes a control system for control-
ling the ion implantation of material by the system. The
control system includes a memory for storing signals asso-
ciated with the device, where the signals are received from
the device and are forwarded to the device during operation
of the device, a hierarchical data structure comprising a
plurality of hierarchically interconnected subsystems repre-
sentative of the operative functions of the device, means for
forwarding the signals to the hierarchical data structure and
means, responsive to the signals, for updating states within
the hierarchical data structure in a controlled manner.

Although the ion implantation system is used as an
example for the invention, the invention is not limited to the
control of any specific type of system.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a schematic block diagram illustrating an ion
implanter that may be controlled by a control system of the
present invention;

FIG. 2 is a high level block diagram of systems compo-
nents that are employed in the control system of the present
invention and that may be used to control the ion implanter
of FIG. 1,



US 6,374,144 B1

5

FIG. 3 is a block diagram illustrating an exemplary
hierarchical data structure of state machines and digital
signal processing and conditioning units that may be used to
control the ion implanter of FIG. 1;

FIG. 4 is a block diagram of an exemplary subsystem that
may be represented by the data structure of FIG. 3, illus-
trating the finite state machine and data flow diagram that
represent a typical element of the control system hierarchy;

FIG. § is a flow diagram illustrating one embodiment of
the method used to build a data structure such as that in FIG.
3;

FIG. 6 is a block diagram of components of a scheduler
that is used to schedule the operation of the subsystems in
the control system of FIG. 2;

FIG. 7 is a flow diagram of one embodiment of a method
of scheduling employed by the scheduler of FIG. 6; and

FIG. 8 is a flow diagram for illustrating an execution
protocol used in the control system of FIG. 2.

DETAILED DESCRIPTION

Various embodiments of the present invention will now be
described with reference to the attached figures, where like
elements are referred to by like numbers in the different
drawings.

According to one aspect of the invention, a control system
architecture (CSA) of hierarchically coupled subsystems
representing the operative functions of a device is provided.
A method of controlling the device represented by the CSA
schedules the execution of the subsystems according to an
execution protocol. The execution protocol performs an
upwards and downwards execution of each of the sub-
systems for every execution cycle of the device. With such
an arrangement, the operations of complex systems may be
modularized into subsystems, and the interrelations between
the subsystems may handled in a controlled manner in
accordance with the hierarchy.

One device which may be controlled by the control
system architecture of the present invention is an ion
implantation system. Ion implantation has become a
standard, commercially accepted technique for introducing
conductivity altering impurities into semiconductor wafers.
The desired impurity material is ionized in an ion source,
and the ions are accelerated to form an ion beam of pre-
scribed energy that is directed at the surface of a semicon-
ductor wafer. The energetic ions in the beam penetrate into
the bulk of the semiconductor material and are imbedded in
the crystalline lattice of the semiconductor material to form
a region of desired conductivity.

The performance of the ion implanter is measured in
terms of wafers processed per unit time. Wafer transfer time,
implant time, and down time all contribute to the total
processing time, and thus it is desirable to minimize these
times in order to achieve high throughput. The performance
of the ion implanter is also measured in terms of dose
accuracy of the ions and dose uniformity over the surface of
the wafer. Because many semiconductor devices are fabri-
cated by an ion implantation system, it is crucial to provide
dose accuracy and uniformity from wafer to wafer in order
to ensure that the devices have controllable and repeatable
operating characteristics.

Accordingly, in order to insure that accuracy is main-
tained while performance is maximized, the operation of the
elements of the ion implantation system are carefully coor-
dinated so that the appropriate implantation occurs at the
appropriate time without incurring unwanted delay.

10

15

20

25

30

35

40

45

50

55

60

65

6

One example of an ion implantation system 100 is shown
in FIG. 1. The ion implantation system of FIG. 1 is described
in U.S. Pat. No. 5,350,926, entitled “Compact High Current
Broad Beam Implanter” and issued Sep. 27, 1994 to White
et al, which is incorporated herein by reference. The ion
implantation system 100 operates generally as follows.

In FIG. 1, an ion implantation system 100 operates with
an ion beam 1 produced by an ion source 2. An arrangement
of three slotted grids 11, 12, 13 serve to confine, extract and
accelerate ions from the source. Ion beam 1 enters between
the poles of an analyzing electromagnet 3 which deflects the
ion beam 1 toward a resolving slit 4. Unwanted ions having
differing momentum are deflected through different angles
by the magnetic field, so that they are intercepted on either
side of the resolving slit. Ion beam 1 diverges again after
passing through the resolving aperture 4, and passes
between the poles of a second electromagnet 5, to provide an
output beam 6 having parallel ion trajectories. At the implant
position, a target 7 is moved up and down at a controlled
velocity on a stage 7a. Uniform ion implantation is accom-
plished by moving target 7 through the output beam 6 with
its vertical component of velocity constant. When implan-
tation of the target is completed, the stage 7a deposits the
target on a conveyor belt or the like and retrieves the next
target for processing.

Exact timing, dosage, and control of the elements in the
ion implantation system 100 are maintained by a control
system 200. According to one embodiment of the invention,
the control system 200 of ion implantation system 100 is
implemented by software applications that execute on a pair
of Central Processing Units (CPUs) CPU 60 and CPU 70.
The control system that is implemented on CPUs 60 and 70,
according to one embodiment of the invention, is a periodic
control system wherein the operation of the ion implantation
system is modularized into a number of hierarchically
arranged subsystems. Associated with each subsystem of the
ion implantation system 100 is one or more state machines
and one data flow diagram, where each data flow diagram
identifies an order of flow of data from digital signal
processing and conditioning units (DSPCUs) associated
with the state machines. The general, the state machines
receive state information from and send command informa-
tion to the digital signal processing and conditioning objects,
which in addition may read and process digital and analog
inputs and numeric inputs, and forward signals to the signal
lines 120. Selected commands may be input to the control
system 200 via a graphical user interface (GUI) 80.

A high level block diagram illustrating one embodiment
of hardware and software components that may be used to
provide periodic control by the control system 200 is shown
in FIG. 2. Specifically, the control system 200 includes an
Information Application Network (IAN) Computer 101, a
New Control System Computer (NCS) 102, and input/output
(I/0) hardware 104. The control system 200 also may
advantageously include a table (D5) identifying constraints
on the permissible set of input and output signals and states
of each of the subsystems to facilitate system revision and
control. The table DS is shown in CPU 70, although it may
reside at any accessible location in the control system 200.
Each of the IAN, NCS and I/O is described in more detail
below.

The IAN 101 and I/O 104 together provide data and
command collection for the control system 200. Separating
the data collection into two components, one which transfers
signal data between the ion implantation system and the
control system, and one which transfers commands between
a GUI and the control system, allows each of the functions



US 6,374,144 B1

7

to be independently scheduled in order to reduce the poten-
tial for inconsistent states.

I/O 104 comprises hardware that provides data collection
means (D4a) for receiving and transmitting signals to prop-
erly coordinate each operation of the ion implant system
100. The I/O 104 receives signal lines 120 which are coupled
to various control signals in the ion implantation system 100
that are to be monitored or driven by the NCS 102. The
control data signals are retrieved by a loop master hardware
122. The loop master hardware samples received control
signals to provide representative digital signals that are
stored as digital data values in one portion of a dual-ported
memory 128.

A processor 130 is coupled to the dual-ported memory
128. One function performed by the processor 130 is reading
the digital data values from memory and transferring the
data to CPU 70 on line to 132 as well as to the New Control
System (NCS) 102 software. The NCS 102 uses the digital
data values stored in memory and processed by the digital
signal processing and conditioning objects to provide state
information to each of the state machines that control and
observe each of the subsystems in the ion implantation
system.

The IAN 101, in one embodiment, is a software data
collection application (D4b) which controls the transfer of
data and commands between the control system 200 and the
GUI 80. The IAN 101 comprises a user interface that allows
a user, for example at the GUI 80, to customize the operation
of the ion implantation system 100 by inputting various
commands and data to the NCS 102 to affect the operation
of the ion implantation system. The user input commands
are received and processed by IAN 101 and propagated to
the NCS 102 at a predetermined time during each execution
cycle of the ion implantation system. Control over the
transfer of commands between the IAN 101 and the NCS
102 is provided by processors 150 and 130.

The NCS 102 is a software application that includes a
hierarchical control structure (D1) of subsystems represent-
ing the operative functions of the ion implantation system.
Each of the subsystems performs one or more tasks, and the
states of subsystems that are relatively lower in the hierarchy
are available to those that are one level relatively higher in
the hierarchy for monitoring and control. The NCS 102 also
includes protocol control (D2) for determining an order of
execution of subsystems in the hierarchy. The NCS 102
further includes a scheduler (D3) for performing the execu-
tion of tasks of subsystems within the hierarchy according to
the protocol and scheduled according to the timing of tasks
performed by each of the associated subsystems.

Structures D1-D5 are functional units that may be imple-
mented in either hardware, software or a combination
thereof. Although the different functional units D1-D5 are
shown in FIG. 2 as being implemented by certain ones of the
CPUs 60 and 70, the present invention is not limited to any
particular number of CPUs or any particular distribution of
functions among CPUs. However, one advantage of sepa-
rating the functionality of the control system into different
CPUs is that it allows for two different operating systems, or
a single operating system with the configuration optimized
for each CPU, to be used with the NCS and IAN software
programs. This approach assures that the best operating
system (or operating system configuration) for data moni-
toring and gathering is utilized for the IAN, while the NCS
relies on the best operating system (or operating system
configuration) for control purposes.

In order to establish a hierarchy, each of the subsystems
in the ion implantation system is broken down into sub-

10

20

25

30

35

40

45

50

55

60

65

8

subsystems. Similarly, sub-subsystems are broken down into
sub-sub-subsystems, that identify the components of the
given sub-subsystem. The breaking down of subsystems into
their component sub-subsystems continues until certain
basic subsystems are identified. More details on the creation
and evaluation of the hierarchical subsystem structure of the
NCS 102 are provided below.

Each subsystem that can be divided into a number of
sub-subsystems is said to be a ‘parent’ with regard to the
sub-subsystems, while the sub-subsystems are said to be
‘children’ with regard to the parent subsystem. The operative
functions of each of the subsystems, sub-subsystems, etc.,
are defined by the combination of state machines and data
flow diagrams of the DSPCU associated with the subsystem,
sub-subsystem, etc.

The NCS 102 may operate in either an automatic or a
manual mode. In addition, each subsystem within the system
hierarchy may operate in either an automatic or a manual
mode. In automatic mode, commands from the GUI 80 may
be sent only to the highest level subsystem in the hierarchy
of subsystems. Commands to lower level subsystems in the
hierarchy from the GUI 80 are executed only after all of the
subsystems in the hierarchy between the highest order
subsystem and the parent of the destination subsystem
(called the “parent chain”) are successfully switched to
manual mode. When in manual mode, parent subsystems
will not command child subsystems, which assures that a
child subsystem will not be commanded by both its parent
subsystem and through the GUI 80 at the same time.
Therefore, switching to manual mode must start from the
highest level subsystem first. In addition, a command sent to
a child subsystem will automatically cause the NCS 102
software to command the parent chain to manual mode, from
the top down. Manual mode for the NCS 102 software
includes all states of the system in which at least the highest
level subsystem is in manual mode.

The interconnected data structure D1 thus provides a
framework for ordered, coherent decision making by the
control system. Ordered decision making and subsystem
execution is enforced by the protocol controller D2 and by
the scheduler D3. The method used by the protocol control-
ler D2 and the scheduler D3 for scheduling decisions and
execution in the subsystems of the hierarchical data structure
is described in more detail below. First, the basic structure
of one embodiment of the hierarchical data structure and a
method for building the hierarchical data structure are
described.

D1: The Data Flow Structure

As described above, the operative functions of the ion
implantation system are represented using a hierarchy of
subsystems, each of which may comprise one or more state
machines and a data flow diagram identifying a flow of data
to and from DSPCUs.

Separating each subsystem into discrete state machine and
DSPCU components simplifies the design and leads to more
robust performance because often, during execution, the
signal processing operations are significantly different from
the decision making aspect of the control.

For example, as shown in FIG. 3, the parent and two child
subsystems are defined by a set of state machines 170-172
and data flow diagrams of DSPCUs 3704, 3706 and 370c. If
the NCS 102 were used to control the ion implantation
system 100 of FIG. 1, state machines 170172 and the data
flow diagrams for DSPCUs 370a, 3705 and 370c would
provide the operative functionality of the system 100. The
subsystem hierarchy is defined at each level by the child
subsystems contained within the parent data flow diagram.



US 6,374,144 B1

9

For example, the subsystem made up of state machine 170
and data flow diagram 270 may be associated with the ion
implantion system, state machine 171 and data flow diagram
271 may be associated with the trimmer and pole control
element 36, and state machine 172 and data flow diagram
272 may be associated with the motion scan control element
27. Similarly, other subsystems at the same or lower levels
in the hierarchy may be associated with other parts of the ion
implantion system. The state machines 171 and 172 are
under the direct control of state machine 170. The data flow
components 271, 272 and DSPCUs 370a, 3705 and 370c are
interconnected between subsystems and are not constrained
by the hierarchy.

One advantage of arranging the state machines in a
hierarchical manner is that it facilitates error handling in the
system under control. Each subsystem is responsible for
detecting and responding to error conditions. In many cases
a subsystem may not be able to determine the appropriate
response for an error condition. In this case, the subsystem
propagates the error to its parent subsystem, which is then
responsible for either responding to the error or further
propagating the error up the parent chain. This is referred to
as “bubbling up” the error. A parent subsystem by design has
control over more of the whole system and has a larger set
of information to determine the appropriate response to
errors. As a result, error conditions need not be propagated
to a top level in the hierarchy, but may be handled at a more
appropriate level. If an error propagates to the top subsystem
without being resolved, it is then propagated to the IAN 101
for response by a user. By distributing the error handling in
this manner, intelligent error handling strategies may be
implemented with a minimum of complexity.

Referring now to FIG. 4, an example illustrating the
components that are potentially included in each subsystem
includes a master state machine 300 and a data flow diagram
310. The data flow diagram 310 identifies associated single
DSPCUs and another component which configures the
behavior of the DSPCU. As shown in FIG. 4, each sub-
system may also include one or more additional levels of
state machines, such as the observer state machine 302,
which are evaluated during execution before the evaluation
of the master finite state machine 300. The state machines
identify the states and associated transitions taken at the
state machine subsystem in response to the input signals.

The subsystem represented by the state machines 300 and
302 in FIG. 4 is an indicator subsystem. There are three
different states that may be entered by the indicator sub-
system; an error state, a transitional state and a terminal
state. Error states are indicated by circles (such as state 303),
transitional states are indicated by rounded edge polygons
(such as state 304) and terminal states are indicated by
octagons such as octagon 305.

In one embodiment, state machine 302 is an observer state
machine that is used to sample the input signals received at
the indicator subsystem (either from the dual-ported
memory 128 or from a child subsystem). Digital inputs can
be of state ON, OFF or UNKNOWN. The input signals
result in the indicator transitioning to either transition state
ON*OK, or OFF*OK, or I/O*ERROR, which is an error
state.

The master state machine 300 is shown receiving the
status of the transition states as inputs
FSM.Observer.On*OK and FSM.Observer.Off*OK. When-
ever one of these inputs is asserted (the Observer FSM enters
one of those states), the master finite state machine transi-
tions into a terminal state of either ON or OFF. If the
FSM.Observer./O*ERROR input becomes asserted, the
indicator transitions to a terminal SHUTDOWN state.

10

15

20

25

30

35

40

45

50

55

60

65

10

Building the Data Structures (D1)

The state machine/data flow diagram, also called a sub-
system diagram (as shown in FIG. 4), is manually con-
structed for each subsystem by a user. After a diagram is
constructed, it can be described by an interface defined by a
set of zero or more commands, a set of one or more states,
a set of zero or more data flow inputs and a set of zero or
more data flow outputs. When one or more of the subsystems
is included in a parent subsystem, a reference to each
instance of the child subsystem is provided in the parent data
flow diagram through an element which represents the
subsystem interface. This element has the same interface as
a DSPCU, but actually represents the encapsulated behavior
of the child subsystem.

In one embodiment, VISIO™ graphical design tools have
been enhanced and are used to create the subsystem designs
in the form of diagrams. The VISIO tool allows for data
from the state machine/data flow diagrams of a child sub-
system to be linked with the parent subsystem as the overall
hierarchical structure of the NCS 102 is constructed. Other
graphical tools that provide connections between graphical
elements and support for external program control may
alternatively be used, and the invention is therefore not
limited to the use of the VISIO tool.

As described above, child subsystems for each parent
subsystem are represented in the parent subsystem’s data
flow diagram. A given subsystem diagram describes the state
machines, DSPCU’s and the child subsystems linked to the
parent. The hierarchy can be defined (and resolved) fully by
starting at the highest subsystem diagram and creating
(following) the links through each of the child subsystems.
Once all of the subsystem diagrams state have been manu-
ally entered, a build may be initiated to convert the sub-
system diagram into the hierarchical data structures describ-
ing all the elements needed to interpret and construct the
state machines, the DSPCUs and their interconnections.
Below, one method that may be used to convert the
subsystem, provided via VISIO™ | into a format that enables
processing by the NCS 102 is described with references to
FIG. 5.

At step 220, as described above, a user prepares sub-
system drawings for each of the subsystems that should be
represented within the system. A complete set of drawings
222 is provided that includes each of the state machine/data
flow diagrams that are included in the hierarchical data
structure. At step 224 the build file is compiled. During the
compile process, unattached inputs and outputs between the
subsystems in the hierarchy, if any, are identified. After any
unattached inputs and outputs have been corrected, a con-
figuration file 226 is created. The configuration file is similar
to the build file. However, all of the inputs and outputs of the
parent/child subsystems have been resolved, and,
accordingly, the information for analyzing the upward and
downward execution of the parent and child subsystems has
been provided.

The configuration file 226 is used by both the CPU 60 and
the CPU 70. The CPU 70 uses the configuration file 226 at
step 228 to build the IAN 101 generic user interface 229.
The generic user interface 229 allows for a user to control
the NCS 102 without specific knowledge of which sub-
systems are actually included in the NCS 102. The CPU 60
uses the configuration file 226 at step 230 as a template to
build the software 231 that executes the NCS 102. In
addition to the configuration file 226, the CPU 60 uses the
scheduler D3 (described in more detail below) to identify
which subsystems in the configuration file are to be evalu-
ated during each execution cycle of the ion implantation
system.



US 6,374,144 B1

11

Scheduling Execution of DSPCUs (D3)

Once the hierarchical data structure representing the
operative functionality of the controlled system is generated,
a schedule of how each of the subsystems interacts during
processing of the controlled system is provided. The sched-
ule is selected to ensure that the operation of each of the
subsystems is performed at the appropriate times to achieve
desired results.

In one embodiment, the total time for operation of the
controlled system is referred to as its total operative time.
The total operative time is apportioned into a number of
execution cycles, during which time the state of the con-
trolled device is evaluated. During one execution cycle, the
hierarchical data structure is analyzed both in an ascending
order of the hierarchy and in a descending order of the
hierarchy. Each execution cycle may be further apportioned
into a number of fundamental time periods. The scheduler
schedules the execution of subsystems at appropriate fun-
damental time periods during an execution cycle, for each of
the execution cycles in the total operative time of the
controlled device.

Thus, the scheduler D3 orders the execution of the state
machines and data flow diagrams of the subsystems that
comprise the control system hierarchy. The order of execu-
tion determined by the scheduler is based on the respective
position of the subsystem in the hierarchy and a selected
frequency at which the subsystem is analyzed. For example,
the subsystem may be analyzed in every execution cycle or
every tenth execution cycle.

The scheduling of execution of state machines and data
flow diagrams is performed prior to actual operation of the
controlled system to maximize performance of the con-
trolled system. In one embodiment, each state machine and
DSPCU 1is represented as an object, and scheduling is
performed using object-oriented programming methods.
Each object is assigned to a fundamental time period within
the execution cycle. The less frequently an object is selected
for execution, the lower the processing overhead associated
with that object.

In one embodiment, the assignment of objects to different
fundamental time periods is performed by the system
designer based upon control requirements. Once the system
designer has selected the time period(s) at which the objects
are to be executed, a series of schedule lists are generated.
As mentioned above, in every execution cycle of operation
of the controlled system, both an upward and downward
execution is performed. Therefore, the series of lists
includes, for each execution cycle, lists identifying DSPCU
objects that are executed in an upward phase of execution
and lists identifying DSPCU objects that are executed in a
downward phase of execution.

Before the series of lists is generated, the hierarchical data
structure is evaluated to determine the worst-case run-time
conditions of the controlled system; i.e., the maximum
amount of time it would take to perform both the upward and
downward execution of every DSPCU in the hierarchical
data structure. The worst-case run-time is used to determine
an amount of time to allow for the execution of each cycle
of the controlled system. The determined worst-case run-
time is divided by a selected number of processing cycles to
determine the fundamental time period.

Referring now to FIG. 6, a block diagram is provided for
illustrating the lists that are generated for calculating worst-
case run-time, and the lists that are generated by the sched-
uler for scheduling the execution of subsystems during the
processing cycles.

The DSPCU objects and state machine objects are
retrieved from the hierarchical data structure to form lists

10

15

20

25

30

35

40

45

50

55

60

65

12

250 and 253 using known recursive hierarchical tree search-
ing techniques. List 253 is a list of all the pointers to state
machine objects. The pointers are ordered from those point-
ers that point to state machine objects of the subsystems at
the bottom of the hierarchical data structure to those pointers
that point to state machine objects of the subsystems at the
top of the hierarchical data structure. List 250 is a list of all
the pointers to DSPCU objects. The pointers to DSPCU
objects are ordered in the order defined by their associated
data flow diagram, in order from the DSPCU objects asso-
ciated with the subsystems at the bottom of the hierarchical
data structure to the DSPCU objects associated with sub-
systems at the top of the hierarchical data structure.

Using the list 253 of pointers to state machine objects, two
new lists, an Update Up list 261 and an Update Down list
256 are generated. Update Up list 261 is a combination of
the DSPCU object list 253 followed by the state machine
object list 250. Update Down list 256 is a combination of the
inverse of the list 253 of pointers to state machine objects
(i.e., ordered from the bottom of list 253 to the top of list
253) followed by the DSPCU object list 250.

The Update Up list 261 and the Update Down list 256 thus
include pointers to objects ordered in accordance with the
hierarchical execution protocol. However, the objects in the
lists have different timing requirements associated with their
execution. That is, each of the objects may be analyzed at
different fundamental time periods during an execution
cycle of the controlled system. In one embodiment, the time
intervals that are available for object execution are restricted
to a set of the intervals that are factors of the total number
of fundamental time periods in an execution cycle. For
example, if the total number of fundamental time periods
required for either upward or downward execution was
eight, then the time intervals that would be available for
object execution would be those time intervals that are
factors of eight; one, two, four and eight. Restricting the
execution of objects to selected time intervals facilitates
balancing, or spreading, of the execution of the objects in the
control system throughout the execution period.

Since all of the objects are associated with one of the time
intervals of the set, the original Update Up and Update
Down lists may be apportioned into as many lists as there are
sets (i.e., factors of the total time intervals) using multiple
searches of the respective lists. For example, as shown in
FIG. 6, assuming that the number of fundamental time
periods in one execution cycle of the controlled system is
equal to eight, there are four factors of eight; one, two, four
and eight. It is assumed that the Update Up list 261 and
Update Down list 256 are each comprised completely of
objects associated with execution time intervals of one, two,
four and eight times the fundamental period. Using search
techniques based on the time interval associated with each
object, the Update Up list 261 and the Update Down list 256
are apportioned into four distinct lists 262-265 and
266269, respectively, using the method described with
reference to FIG. 7.

At step 700, each of the group lists is assigned a value
equal to the time interval associated with the group divided
by the least common multiple. In the example of FIG. 6,
where the least common multiple is one, the assigned values
for each of the groups 262/266, 263/267, 264/268 and
265/269 are equal to eight, four, two and one, respectively.
The assigned value determines the number of fundamental
time periods in which each of the objects in the group is
analyzed during one cycle of execution of the controlled
system. Thus, each object in group 262 is analyzed for eight
fundamental time periods, while each object in group 265 is
executed for one fundamental time period.



US 6,374,144 B1

13

Once each group has been assigned a value, at step 702
each group is apportioned into a balanced number of sub-
groups of objects. The number of subgroups in each pair of
groups is determined by calculating the total allowable
execution time for all objects in the pair of groups, and
dividing this total allowable execution time by the number
of fundamental time periods with the pair of groups. Thus,
for groups 262, the total allowable execution time is eight
fundamental time periods, while the number of fundamental
time periods is eight, so there is one subgroup. For group
264, the total allowable execution time is two fundamental
time periods, while the total number of fundamental time
periods is eight, so there are four subgroups of two funda-
mental time periods each. Thus, in FIG. 6, groups 262 and
266 have one subgroup each, groups 263 and 267 have two
subgroups each, groups 264 and 268 have four subgroups
each, and groups 265 and 269 have eight subgroups each.

Once the number of subgroups in each group is
determined, objects are distributed from the Update Up list
261 and Update Down list 256 into subgroups of each of the
groups. The group into which an object is allocated is
determined in response to the associated time interval of the
object (one, two, four or eight). The subgroup that the object
is placed into is determined in response to the time it takes
each object to run and the time allocated to the subgroup.

In one embodiment, a total time allocation for each group
is determined by adding the number of fundamental periods
associated with the particular group (for example, adding up
the total time period for execution of objects associated with
the time interval two from the Update Up list and Update
Down list). For each group, all of the objects from the
Update Up list are filled into Update Up subgroups before
objects retrieved from the Update Down list for placement
in Update down subgroups, although this is not a limitation
of the present invention. Once the objects from the Update
Up list 261 have been allocated to subgroups, then, using the
remaining time allocated to the group, objects from the
Update Down list 256 are allocated to subgroups. Thus, at
step 704, it is determined whether the Update Up list for the
group is empty. If not, the process proceeds to step 706,
where the next successive object for the group is selected
from the Update Up list 261.

As mentioned above, each subgroup has associated there-
with an allocated time period which is some multiple of the
fundamental time period. Objects are placed into subgroups
until the allocated time period for the subgroup has been
matched, then objects are placed in the next successive
subgroup for the group. Thus, at step 708, the execution time
for the object (stored, for example, as a property of the
object) is added to the total subgroup execution time and is
compared against the allocated subgroup time. If the sum
exceeds the allocated subgroup time, at step 710 the next
subgroup is retrieved. If the sum does not exceed the
allocated subgroup time at step 708 or once the new sub-
group is retrieved at step 710, at step 712 the object is placed
in the subgroup, and the total time and subgroup times are
incremented. At step 714, a comparison is made against the
maximum allocated group time. If time remains for analyz-
ing the group, the process returns to step 704.

When it is determined that the Update Up list is empty,
objects are moved from the Update Down list 256 to
associated update down subgroups for the group via steps
716 through 722 until, at step 714 it is determined that all the
time allocated to the group is met.

Thus, using the process illustrated in FIG. 7, the objects
are selected from the respective Update Up and Update
Down lists for placement into specific groups according to

10

15

20

25

30

35

40

45

50

55

60

65

14

their associated time interval (one, two, four or eight). In
group pair 262 and 266, since there is only one subgroup, all
of the objects are in subgroup Al. For group pair 263 and
267, objects are either in subgroup Bl or B2.

The result of the process described in FIG. 7 is a series of
time period based lists, each of which includes pointers to
state machine and DSPCU objects from the hierarchical data
structure and identifies the fundamental time period(s) at
which the associated object is analyzed during one execution
cycle of the controlled system. The time period based lists
are used to generate run time execution lists 274-289 (FIG.
6), which are lists of pointers to the subgroups. The run time
execution lists identify the order of execution of each of the
subgroups of objects for each of the fundamental cycles in
one upward and downward execution of the controlled
system. Using the example of FIG., 6, where the execution
of the controlled system includes eight fundamental time
periods, the Update Up run time execution list comprises
eight run time execution upward execution lists 274-281
and the Update Down run-time execution list comprises
eight run-time execution downward execution lists 282—289.
For each fundamental time period, an upward and down-
ward pair of run-time execution lists is executed, with the
objects in each of the subgroups pointed to in the run-time
execution lists being executed in order.

The run-time execution lists are constructed as follows.
For each fundamental time period, one of the subgroups
from each of the time period based lists is included in the
run-time execution list. Each of the next successive sub-
groups in the group is selected for execution in successive
cycles. Separating subgroups into different fundamental
time periods distributes operations across the execution
cycle, thereby limiting the number of objects that is pro-
cessed in a given time period to a manageable quantity.

The run-time execution lists are used to generate an
Update Up lists 290 and Update Down lists 291, each of
which is a list of pointers to run-time execution lists such as
lists 274-289. Thus, one set of eight lists, such as list
274-281 is provided for each execution cycle of the con-
trolled system. In one embodiment, a timer (either imple-
mented in software or hardware) is incremented from zero to
the total number of execution cycles of the controlled
device. For each timer increment, one list is generated in
each Update Up list 290 and Update down list 291 by
copying pointers from each of the run-time lists to the
respective lists. For example, if there are 1000 execution
cycles in one operative cycle of the controlled system, the
Update Up lists 290 include 1000 run-time execution lists.
The Update Up lists 290 and Update Down lists 291 thus
provide the scheduling of operations for each of the execu-
tion cycles of the controlled system. Scheduling execution
of each of the objects prior to the actual run-time of the
controlled system reduces the run-time overhead and there-
fore enhances the performance of the controlled system.

Although the above method of scheduling execution of
objects from a hierarchical data structure has the advantage
of distributing the execution operations over a desired
execution period, the present invention is not limited to the
above described steps. Rather, any method of scheduling
execution of the objects that allows for the hierarchical
structure of the objects to be maintained may alternatively
be used.

D2: Protocol Control

The protocol controller D2 enforces an execution protocol
of the DSPCU and state machine elements of the children/
parent subsystems for each execution cycle of the controlled
system. The protocol comprises two separate execution



US 6,374,144 B1

15

programs, called threads, as shown in the flow diagram of
FIG. 8. One program, a main thread 400, is for state
evaluation and command evaluation of DSPCUs and state
machines in a tightly controlled periodic time frame. The
other program, a secondary thread 500, is for execution of
possibly longer individual calculations by the DSPCUs. The
two threads operate independently, where the secondary
thread 500 is under the control of the DSPCUs in the main
thread 400.

The main thread 400 has seven phases of execution and
involves the IAN 101, the NCS 102 and the I/O 104
components described above with reference to FIG. 2. The
operation of the protocol controller is now described with
reference to FIG. 8, referencing elements of the control
system 200 illustrated in FIG. 2.

A first step 402 is for synchronization to provide period-
icity to the operation of each execution cycle. Once a
periodic timer has elapsed, operation proceeds to step 404.

At step 404, phase I of the execution protocol is initiated.
Data collection is performed at I/O 104, and the new output
signal values are stored into, and the new input signal values
are read from the memory 128. Output signals calculated by
the DSPCUs during the previous phase II, step 406, and
phase V, step 412, are stored in numeric format into the dual
ported memory of I/O 104 for controlling the physical
hardware associated with each of the subsystems. Input
signal values from the physical hardware are read from the
dual ported memory of I/0 104 and are stored in memory in
the NCS 102 for evaluation in the next phase.

At step 406, phase II of the execution protocol is initiated.
During phase II, the NCS 102 executes the state evaluation
function of the DSPCUs of the subsystems. The execution
order is dictated by the combined data flow diagrams of all
subsystems, from left to right, in the order defined by the
data flow arrows, from the least senior child subsystem in
the hierarchy to the most senior parent in the hierarchy.

At step 408, phase III of the execution protocol is initi-
ated. During phase III, the NCS 102 executes the state
evaluation function of each of the state machines in the
hierarchy. The execution is in order from the state machines
that are lowest in the hierarchy to those that are highest in
the hierarchy. Thus, state machines associated with children
sub-subsystems are analyzed before state machines associ-
ated with their parent subsystems.

Phase II and phase III together comprise the state evalu-
ation in upward execution phases. When performing the
upward state evaluation execution, inputs received only
from children subsystems (or inputs received directly from
the I/O 104) are used to evaluate the state machines and
DSPCUs of a parent subsystem.

At step 410, phase IV, the NCS 102 executes the com-
mand evaluation function of each of the state machines in
the hierarchy. The execution order is from the most senior
parent through to the least senior child.

At step 412, phase V, the NCS 102 executes the command
evaluation function of each of the DSCPUs. The execution
order is in the same order as during phase II, namely data
flow order.

If new requests were added to a secondary thread new
request list 450 by the DSPCUs, these requests are sent to
the secondary thread 500 at step 414, phase VI.

When the above-described phases of execution have been
completed, software within the IAN 101 is updated in step
416, phase VII. At step 416, data from the NCS 102 is sent
to the JAN 101. Ian 101 then forwards commands that have
been received from the graphical user interface, from IAN
applications, and data collected since the data collection step

5

10

15

20

25

30

35

40

45

50

55

60

65

16

404 of the previous cycle to the NCS 102. After the
downward phase of execution has been completed, output
signals provided by the state machines are stored in digital
format at the dual ported memory of I/O 104. The digital
output is retrieved and translated into analog signals if
necessary, for controlling the physical hardware of each of
the subsystems. The process proceeds back to step 402 to
wait for the next periodic timer tick, where a wait state is
entered until the start of the next execution cycle.

The secondary thread 500 operation starts when one or
more DSPCUs add requests. A DSPCU may add an execu-
tion request to the secondary thread new request list 450
during step 414, phase VI, operation. When new requests are
received by the secondary thread 500, the new execution
requests are removed from the new request list 450 and are
added to a secondary thread request list 501 in step 504. The
secondary thread 500 executes each request in the order
given, after previous requests are completed, in step 506.
The execution of each request may run for many periodic
cycles of the main thread 400. This allows a DSCPU to
execute longer calculations without interfering with the
periodicity of the main thread 400. The DSPCU evaluates
the state of its execution request during each of the subse-
quent phase II state evaluations (step 406) until execution of
the request is completed by the secondary thread in step 508.
The secondary thread 500 continues to execute requests until
the list is empty. The secondary thread 500 waits at step 502
until the main thread 400 generates more requests.

The up/down execution environment described above
allows for a high degree of coordinated control to be exerted
over the subsystems within the ion implant system 100. By
separating the effects of input signals provided from hard-
ware from the effects of commands provided by the user, the
state of operation of the ion implant system may first be
evaluated before commands are issued that impact that state.
In addition, by performing a two-phase execution of the state
machines and DSPCUs, the true state of each subsystem
may be determined since it is affected by the two different
types of inputs.

Accordingly, an improved method and apparatus for con-
trolling complex systems has been provided that includes a
plurality of hierarchically coupled state machines that reflect
control the operations of associated subsystems within the
control system. One feature of the new control system is that
it is periodic. Because the state machines are evaluated at
periodic intervals within a given analytical time period, an
accurate representation of the state of the subsystem at any
given time is provided. A second feature of the control
system is that it has a synchronized interface to both
input/output signals as well as the user commands from the
user interface. By separating the execution of the signals as
well as to user commands from the user interface. By
separating the execution of the signals from that of the
commands, it can be assured that the impact of the com-
mands are synchronized with the actual states of the system
to be controlled. In addition, because the control system is
based on a hierarchical state machine arrangement, the
addition or deletion of elements within the control system
may be easily accommodated by providing or removing
appropriate communication links in parent and child sub-
systems. Accordingly, no redesign of system components is
required for adding and deleting clearly identifiable for
subsystems that are added to and deleted from the existing
of subsystems in the control system. In addition, due to the
hierarchical nature of the control system, error conditions
may be propagated at only to the appropriate supervisory
level within the control system. As a result, error handling is



US 6,374,144 B1

17

distributed among the control system to thereby reduce the
overall complexity of handling at any one subsystem, while
allowing for informed error handling.

Although the above control system has been described
with regard to an ion implant system, it should be under-
stood that the present invention is not limited to such a use
but rather is intended to cover the control of any complex
systems that may be modularized into subsystems.
Accordingly, the above control system, which uses hierar-
chical subsystems defined by hierarchical state machines
that are inter-coupled to maximize adaptability and error
handling may be expanded for use in other systems as well.

Having now described a few embodiments of the
invention, it should be apparent to those skilled in the art that
the foregoing is merely illustrative and not limiting, having
been presented by way of example only. Numerous modi-
fications and other embodiments are within the scope of one
of ordinary skill in the art and are contemplated as falling
within the scope of the invention.

What is claimed is:

1. A system for controlling a device having a plurality of
interconnected subsystems coupled in a hierarchy, with
subsystems at a given level in the hierarchy being included
in a subsystem at an immediately higher level of the
hierarchy, the system comprising:

a plurality of hierarchically coupled state machines, with
at least one state machine associated with each of the
hierarchically coupled subsystems;

means for evaluating the states of the state machines for
each of the hierarchically coupled subsystems in an
order defined by the hierarchy; and

a scheduler for scheduling an order of execution of the
plurality of subsystems during operation of the con-
trolled device and determining the order of execution of
the subsystems in the hierarchy in response to a total
execution time of each of the subsystems of the device
and in response to a selected number of cycles for
execution of the device,

wherein a time period is associated with each of the
subsystems for indicating how often the associated
subsystem is to be evaluated during operation of the
controlled device, and wherein the order of execution
of the subsystems is determined in response to the
associated time period of each of the subsystems.

2. The system according to claim 1 further comprising, for

each of the hierarchically coupled subsystems:

a digital signal processing and conditioning object,
coupled to the at least one state machine, for transfer-
ring signals into and out of the associated subsystem;
and

a user interface, coupled to the hierarchically coupled
state machines, for transferring commands to the hier-
archically coupled state machines.

3. The system according to claim 2, further comprising:

a memory for storing signals associated with each of the
plurality of subsystems;

means for evaluating the plurality of hierarchically
coupled state machines responsive to signals stored in
the memory, wherein state machines that are relatively
lower in the hierarchy are evaluated before state
machines that are relatively higher in the hierarchy, and
wherein the state machines are evaluated using state
data received only from state machines relatively lower
in the hierarchy and from data flowing into the digital
signal processing and conditioning objects;

means for receiving commands from an external user; and

10

15

20

25

30

40

45

50

55

60

65

18

means for evaluating the plurality of hierarchically
coupled state machines responsive to the commands
from the external user, wherein state machines that are
relatively higher in the hierarchy are evaluated before
state machines that are relatively lower in the hierarchy,
and wherein state machines are evaluated using com-
mands received only from state machines that are
relatively higher in the hierarchy.

4. The system according to claim 1, wherein the means for
evaluating the states of the state machines operates to
evaluate state machines that are relatively lower in the
hierarchy before the evaluation of state machines that are
relatively higher in the hierarchy.

5. The system according to claim 4, wherein the means for
evaluating the states of the state machines evaluates the state
of a state machine using state data received only from state
machines that are relatively lower in the hierarchy.

6. The system according to claim 4, wherein the means for
evaluating the states of the plurality of state machines
evaluates the state of a state machine using command data
received only from state machines that are relatively higher
in the hierarchy.

7. The system according to claim 1, wherein each of the
plurality of hierarchically coupled state machines comprises
at least one error state for identifying an error in the
associated subsystem.

8. The system according to claim 1, wherein each of the
plurality of hierarchically coupled state machines further
comprises at least one transitional state for identifying a
changing state of the associated subsystem.

9. The system according to claim 1, wherein each of the
plurality of hierarchically coupled state machines further
comprises at least one terminal state for indicating a fixed
state of the associated subsystem.

10. The system according to claim 1, wherein each of the
plurality of hierarchically coupled subsystems further com-
prises a data flow diagram, and wherein the at least one state
machine and data flow diagram are provided to indicate the
operative state of the associated subsystem.

11. The system according to claim 10, wherein the sched-
uler further comprises:

a first ordered list of state machine pointers to state
machines of the hierarchical coupled subsystem, the
state machine pointers ordered in ascending hierarchi-
cal order of the associated subsystems;

a second ordered list of data flow pointers to the data flow
diagrams of the hierarchically coupled subsystem, the
data flow pointers being ordered in data flow order and
in ascending hierarchical order of the associated sub-
systems,

an upward execution list, comprising the second list
followed by the first list; and

a downward execution list, comprising the first list in

reverse order followed by the second list.

12. The system according to claim 11, wherein each of the
time periods associated with each of the subsystems is
selected from a set of available time periods that are factors
of a total number of time periods used for execution of the
device.

13. The system according to claim 12, further comprising:

a plurality of sets of upward update lists having a plurality
of entries, the sets of upward update lists corresponding
in number to a number of time periods in the set of
available time periods, each entry of the set of upward
update lists for storing a pointer to one of the entries in
the upward execution list;



US 6,374,144 B1

19

a plurality of sets of downward update lists having a
plurality of entries, the sets of downward update lists
corresponding in number to a number of time periods
in the set of available time periods, each entry of the set
of downward update lists for storing a pointer to one of
the entries in the downward execution list; and

means for copying the state machine pointers and data
flow pointers from the upward execution lists and the
downward execution lists to one or more of the plu-
rality of upward update lists and downward update
lists, respectively, responsive to an allocated time
period for the execution of the subsystem associated
with the pointer.

14. The system according to claim 13, further comprising:

a plurality of upward scheduled lists having a plurality of
entries, the upward scheduled lists corresponding in
number to the total number of time periods used for
execution of the device, each of the entries of the
upward scheduled lists for storing pointers to the
upward update lists;

a plurality of downward scheduled lists having a plurality
of entries, the downward scheduled lists corresponding
in number to the number of time periods used for
execution of the device, each of the entries of the
downward scheduled lists for storing pointers to the
downward update lists; and

means for copying pointers from the plurality of upward
update lists to the plurality of upward scheduled lists,
and for copying pointers from the plurality of down-
ward update lists to the plurality of downward sched-
uled lists, wherein the pointers are selected for copying
to an associated one of the plurality of scheduled lists
according to the time period of their associated sub-
system.

15. The system according to claim 14, further comprising:

a master upward list comprising a plurality of entries
corresponding in number to a total number of time
periods for execution of the device, the master upward
list for storing pointers to subsystems that are analyzed
at each associated time period;

a master downward list comprising a plurality of entries
corresponding in number to the total number of time
periods for execution of the device, the master down-
ward list for storing pointers to subsystems that are
executed during the associated time period;

a timer for measuring and controlling the time period; and

means, coupled to the timer, the master upward list, the
master downward list, the plurality of upward sched-
uled lists and the plurality of downward scheduled lists,
for storing pointers to the plurality for upward sched-
uled lists in the master upward list and for storing
pointers to the plurality of downward scheduled lists in
master downward list responsive to the measured and
controlled time period.

16. The method for analyzing a system having a plurality
of interconnected subsystems coupled in a hierarchy, with
subsystems at a given level in the hierarchy being included
in a subsystem at an immediate higher level of the hierarchy,
each one of the interconnected subsystems being associated
with a corresponding one of a plurality of hierarchically
coupled state machines, the method comprising the steps of:

evaluating, for each subsystem, a state of the associated
state machine, wherein an order of evaluation of the
associated state machines is determined in response to
an order defined by the hierarchy of the plurality of
interconnected subsystems; and

10

15

20

25

30

35

40

50

55

60

65

20

scheduling the execution of subsystems in the hierarchy
of state machines, wherein associated with each of the
subsystems is a time period for indicating how often the
associated subsystem is to be evaluated, and wherein
the step of scheduling includes the step of determining
the order of execution of the subsystems in response to
the time period of each of the subsystems, and wherein
the step of determining the order of execution is firther
performed in response to a total execution time of the
system.

17. The method according to claim 16 wherein associated
with each of the subsystems is a data flow diagram com-
prising digital signal processing and conditioning objects,
and wherein the method further comprises the steps of:

transferring selected external signals into and out of each

of the hierarchically coupled subsystems, wherein the
external signals that are transferred into and out of each
subsystem are those external signals associated with
digital signal processing and conditioning objects that
are relatively lower in the hierarchy than each state
machine; and

transferring commands into each of the hierarchically
coupled state machines, wherein the commands trans-
ferred into each of the state machines are commands
that are received at the each state machine from sub-
systems that are relatively higher in the hierarchy than
the each state machine.

18. The method according to claim 17, wherein the step
of evaluating the state of the associated state machine in the
order defined by the hierarchy evaluates state machines
associated with digital signal processing and conditioning
objects that are relatively lower in the hierarchy before the
evaluation of state machines associated with digital signal
processing and conditioning objects that are relatively
higher in the hierarchy.

19. The method according to claim 16, wherein the order
of evaluating the state of the state machines is from those
state machines associated with subsystems that are relatively
lower in the hierarchy to those state machines associated
with subsystems that are relatively higher in the hierarchy.

20. The method according to claim 16, wherein the step
of evaluating the state of the associated state machine in the
order defined by the hierarchy further comprises the steps of:

storing signals received from the plurality of subsystems

of the system in a memory;

evaluating state machines associated in an upward direc-

tion responsive to the signals stored in the memory,
wherein state machines associated with subsystems that
are relatively lower in the hierarchy are evaluated
before state machines associated with subsystems that
are relatively higher in the hierarchy, and wherein each
state machine is evaluated using state data received
only from state machines associated with subsystems
that are relatively lower in the hierarchy than the each
state machine;

receiving commands from an external user; and

evaluating the state machines in a downward direction

responsive to the commands from the external user,
wherein state machines that are associated with sub-
systems that are relatively higher in the hierarchy are
evaluated before state machines that are associated with
subsystems that are relatively lower in the hierarchy,
and wherein each state machine is evaluated using
commands received only from state machines associ-
ated with subsystems that are relatively higher in the
hierarchy than the each state machine.



US 6,374,144 B1

21

21. The method according to claim 20, wherein associated
with each of the interconnected subsystems is a data flow
diagram, and wherein the step of evaluating the state
machines in an upward direction includes the step of evalu-
ating the data flow diagrams of the subsystems in ascending
hierarchical order before evaluating the state machines of
the associated subsystems in ascending hierarchical order.

22. The method according to claim 21, wherein the step
of evaluating the state machines in a downward direction
includes the step of evaluating the data flow diagrams of the
subsystems in descending hierarchical order after evaluating
the state machines of the associated subsystems in descend-
ing hierarchical order.

23. The method according to claim 16, wherein each of
the state machines comprises at least one error state for
identifying an error at the associated subsystem.

24. The method according to claim 16, wherein each of
the state machines further comprises at least one transition
state for identifying a changing state of the associated
subsystem.

25. The method according to claim 16, wherein each of
the state machines further comprises at least one terminal
state for indicating a fixed state of the associated subsystem.

26. The method according to claim 16, wherein associated
with each of the state machines is an error state for indicat-
ing an error at the associated subsystem, and wherein the
errors for each of the associated subsystems are forwarded
to a predetermined level in the hierarchy of subsystems.

27. A control system for controlling a device comprising:

a processor, coupled to the device, the processor com-
prising:

a memory for storing signals associated with the
device, where the signals are received from the
device and forwarded to the device during operation
of the device;

a hierarchical data structure comprising a plurality of
hierarchically interconnected subsystems represen-
tative of the operative functions of the device,
wherein each of the interconnected subsystems is
represented by at least one object;

10

15

20

25

30

35

22

means for forwarding the signals to the hierarchical
data structure;

means, responsive to the signals, for updating states
within the hierarchical data structure in a controlled
manner, wherein the means for updating the states
within the hierarchical data structure in a controlled
manner includes means for evaluating states of
objects in ascending hierarchical order and in
descending hierarchical order during an execution
cycle; and

a scheduler, for scheduling the execution of each of the
objects of the hierarchical data structure during
operation of the device, wherein scheduling is per-
formed in response to an execution protocol of the
control system;

wherein each of the at least one objects further includes
at least one of either a state machine or a data flow
diagram, and wherein the execution protocol of the
control system dictates an order of execution of the
state machines or data flow diagrams of the hierar-
chical data structure.

28. The control system according to claim 27, wherein the
means for evaluating the states of objects in ascending
hierarchical order evaluates the state of each of the objects
using information from objects that are relatively lower in
the hierarchical data structure than the each object.

29. The control system according to claim 27, wherein the
means for evaluating the state of objects in descending
hierarchical order evaluates the state of each of the objects
using information from objects that are relatively higher in
the hierarchical data structure than the each object.

30. The control system according to claim 27, wherein the
execution protocol includes four phases of execution com-
prising an ascending data flow execution phase, an ascend-
ing state machine execution phase, a descending state
machine execution phase and a descending data flow execu-
tion phase.

31. The control system according to claim 27, wherein the
device is an ion implantation system.



